Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

ent unit of MAHE, Manipal)

III SEMESTER B.TECH. (MECH/IP/MT/AERO/AUTO) **GRADE IMPROVEMENT/MAKE UP EXAMINATIONS, JULY 2021**

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2151] **REVISED CREDIT SYSTEM**

Time: 2 Hours		Date:19-07-2021	Max. Marks: 40
		Instructions to Candidates:	
	✤ Answer a	any FOUR FULL questions.	
1A.	Solve $y'' + xy$	x = 1 , $y'(0) = 1$ and $y'(1) = 0$ and $h = 0$	0.5. 5

- **1B.** Solve $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$; u(x, 0) = 0, u(0, t) = u(1, t) = 100t, 0 < x < 1, 5 t > 0; $h = \frac{1}{4}$ for two time steps.
- **2A.** Obtain Fourier series for the function $f(t) = \frac{1}{4}(\pi t)^2$; $0 \le t \le 2\pi$, 5 $f(t+2\pi) = f(t)$. Hence obtain (i) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.
- 2B. Obtain the half range Fourier sine series fo $f(x) = \begin{cases} \frac{2\kappa x}{l} & ; \quad 0 \le x \le \frac{l}{2} \\ \frac{2k(l-x)}{l} & ; \quad \frac{l}{2} \le x \le l \end{cases}$
- Show that Fourier transform of $f(x) = \begin{cases} a |x|; \ |x| < a \\ 0; \ |x| > a > 0 \end{cases}$ is $\sqrt{\frac{2}{\pi}} \{\frac{1 \cos as}{s^2}\}$ 5 3A. and hence evaluate $\int_0^\infty (\frac{\sin t}{t})^2 dt$
- Find the inverse Fourier sine transform of $\frac{1}{s}e^{-2s}$. 5 3B.
- **4A.** A vector field is given by $\vec{A} = (x^2 + xy^2)\hat{i} + (y^2 + x^2y)\hat{j}$ show that the field is 5 irrotational and find the scalar potential.
- Find the value of *a*, *b*, *c* so that the directional derivative of 4B. $\phi = axy^2 + byz + cz^2x^3$ has a maximum of magnitude 64 in the direction of z –axis.

MAT-2151

Page 1 of 2

5

5

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

5

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

- **5A.** Use Green's theorem in a plane to evaluate the integral $\oint_C (2x^2 - y^2)dx + (x^2 + y^2)dy$ where *C* is the boundary in the *xy*plane of the area enclosed by the *x*-axis and the semi-circle $x^2 + y^2 = 1$ in the upper half *xy*-plane.
- **5B.** Verify Stokes' theorem for $\vec{F}(x, y, z) = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ where *S* is the upper-half surface of the sphere $x^2 + y^2 + z^2 = 1$ and *C* is its boundary.
- **6A.** Solve $u_{xx} + u_{xy} 2u_{yy} = 0$ using the transformations v = x + y, z = 2x y. **5**
- **6B.** Derive one-dimensional wave equation with suitable assumptions. **5**