Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

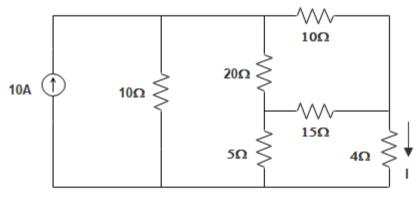
MAX. MARKS: 50

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

III SEMESTER B.Tech. (BME) DEGREE END SEM EXAMINATIONS MARCH 2021

SUBJECT: NETWORK ANALYSIS (BME 2154) (REVISED CREDIT SYSTEM) Monday, 8th March, 2021, 9 AM to 12 NOON


TIME: 3 HOURS

Instructions to Candidates:

1. Answer ALL questions.

2. Draw labeled diagram wherever necessary. Any missing data may suitably be assumed.

1A) For the circuit shown in Fig.1, determine the current I and power dissipated in 4Ω (4) resistor using node voltage analysis.

1B) For the circuit shown in Fig.2 determine the current I and power dissipated in 3Ω (3) resistor using Thevenin's theorem.

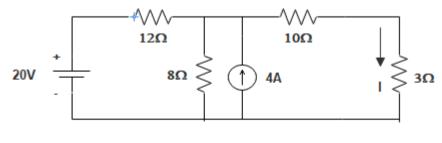
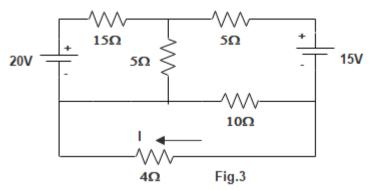



Fig.2

1C) For a series RLC resonant circuit, show that, $Z = R[1 + j2Q_o\delta] \quad \text{Where } \delta = \frac{f - f_o}{f_o}$ (3) 2A) For the circuit shown in Fig.3, find the current I in 4Ω resistor using superposition (4) theorem.

2B) For the circuit shown in Fig.4, find the current I in 5 Ω resistor.

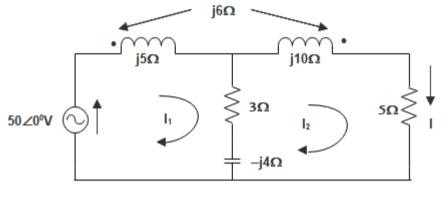
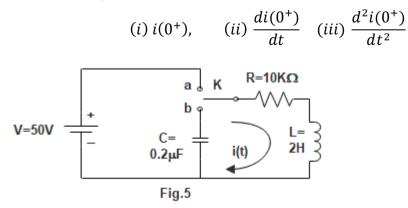
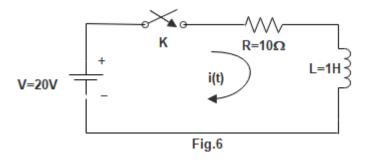
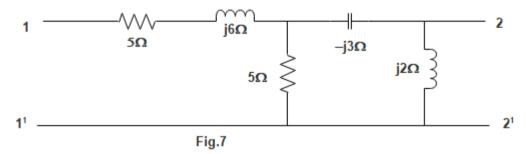
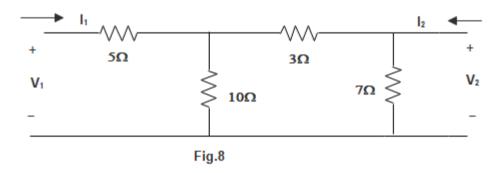



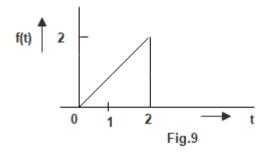
Fig.4

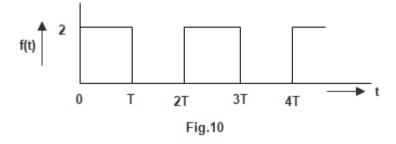

- **2C)** State and prove Milliman's theorem for n number of voltage sources E_i connected in parallel considering the internal impedance Z_i in series with the sources. (3)
- 3A) For the network shown in Fig.5, the circuits attains steady state when the switch K is at the position "a" for t<0. At t=0, the switch K is changed from the position "a" to the position "b". find,


BME 2154

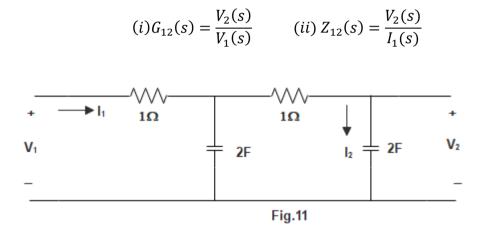
(3)


3B) For the circuit shown in Fig.6, the switch K is closed at t=0. Using Laplace transform find the expression of i(t) for t>0 and plot the waveform. (3)


3C) . For the network shown in Fig.7, obtain its star equivalent circuit and draw the circuit (3) with star equivalent components.



4A) For the circuit shown in Fig.8, find the h-parameters and draw the h-parameter model (4) of this circuit.



4B) For the waveform shown in Fig.9, obtain its Laplace transform using gate function. (3)

5A) For the network shown in Fig.11, find the expressions,

- **5B**) A pulse waveform of amplitude V volts and the pulse width of t_P is applied to a high pass RC circuit having a time constant RC. Derive the expressions of the output and sketch the waveform. (3)
- 5C) A symmetrical square wave whose average value is zero has peak to peak amplitude of (3) 20 volts and a time period of 2 μ Sec. This waveform is applied to a low pass RC circuit having a RC time constant of 1 μ Sec. Calculate and sketch the steady state output waveform.

(4)