|--|

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

III SEM B.Tech (BME) DEGREE END-SEMESTER EXAMINATIONS, MARCH 2021

SUBJECT: SIGNALS & SYSTEMS (BME 2155)

Friday, 12th March, 2021, 9 to 12 Noon

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to Candidates:

Answer ALL questions.

1A.	(i) State the condition (based on the ROC of the system function, $H(z)$), for stability and	04
	causality of LSI systems.	
	(ii) Find the inverse Z-transform of $X(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - 2z^{-1}}$ if	
	(a) System is causal (b) System is stable	
1 B .	Find the DTFT of the following sequences and sketch the magnitude spectrums over	03
	$-\pi \le w \le +\pi.$	
	(a) $x(n) = \delta(6-3n)$ (b) $x(n) = u(n+1) - u(n-2)$	
1C.	Consider a continuous-time signal, $x(t) = 12 \cos(800 \pi t) \cos^2(1800 \pi t)$. Determine	03
	the minimum allowable sampling frequency.	
2A.	Two LSI systems are connected in cascade. The impulse responses associated with the	04
	two systems are given as follows:	
	$h_1(n) = \left(\frac{1}{5}\right)^n u(n)$ $h_2(n) = 2\delta(n-1) + 5\delta(n-2)$	
	Find the overall impulse response of the system.	
2B.	A discrete-time signal is given by $x(n) = 2^n[u(n + 1) - u(n - 4)]$. Sketch each of the	03
	following versions of the signal.	
	(a) $y_1(n) = x(-n+4)$ (b) $y_2(n) = x(-n-2)$	

2C.	Find the Z-transform $X(z)$ and sketch the pole-zero plot with the ROC for each of the	03
	following sequences:	
	(a) $x(n) = \left(\frac{1}{3}\right)^n u(n) + \left(\frac{1}{2}\right)^n u(-n-1)$	
	(b) $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(-n-1)$	
3A.	For each, determine whether the system is linear or nonlinear, shift-invariant or	04
	shift-varying, stable or unstable and, causal or non-causal. Justify your answer.	
	(a) $y(n) = x(n) + x(-n)$ (b) $y(n) = x^2(n)$	
3B.	Using DTFT, evaluate the convolution, $y(n) = x(n) * h(n)$ where	03
	$x(n) = \{1, 1, 1, 1, -1, -1\}$ and $h(n) = \delta(n-2) - \delta(n-4)$.	
3C.	(i) What is the condition for an LSI system to be (a) Causal (b) Stable?	03
	(ii) A LSI system is characterized by its unit sample response $h(n)$ given	
	by $h(n) = \alpha^n u(n)$.	
	(a) Does this represent a causal system? (b) Is the system BIBO stable?	
	Justify your answer.	
4A.	Consider the interconnection of LSI systems:	04
	$x(n) \longrightarrow h_1(n) \longrightarrow h_2(n) \longrightarrow h_2(n) \longrightarrow h_3(n) \longrightarrow h_4(n) \longrightarrow h_4(n)$	
	Where, $h_1(n) = \delta(n) + 2 \delta(n-2) + \delta(n-4)$	
	$h_2(n) = h_3(n) = (0.2)^n u(n)$	
	$h_4(n) = \delta(n-2)$	
	Calculate the overall frequency response of the system in terms of its individual	
	frequency responses.	
4B.	If the input to the LSI system is represented by weighted sum of time-shifted impulses,	03
	prove that the output is represented by the weighted sum of time-shifted impulse	
	responses.	

Г

Т

Т

4C.	(i) What is the relationship between Z-transform and DTFT?	03
	(ii) What is the Z-transform of the series that has the Fourier transform	
	$X(e^{jw}) = 1 + \cos w$? Also find $x(n)$.	
5A.	If the input to a LSI system is $x(n) = \left(\frac{1}{2}\right)^n u(n) + 2^n u(-n-1)$ and the output is	04
	$y(n) = 6\left(\frac{1}{2}\right)^n u(n) - 6\left(\frac{3}{4}\right)^n u(n)$. Find the system function, $H(z)$, and determine	
	whether or not the system is stable and/or causal.	
5B.	Given the continuous-time signal specified by	03
	$x(t) = \begin{cases} 1 - t , & -1 \le t \le 1 \\ 0, & otherwise \end{cases}$	
	Determine the resultant discrete-time sequence obtained by uniform sampling of $x(t)$	
	with a sampling interval of (a) 0.25sec (b) 0.5sec (c) 1.0sec.	
5C.	Consider a LSI system described by the difference equation, $y(n) = x(n) + x(n-1)$.	03
	(i) Determine the frequency response $H(w)$ of the system and sketch its magnitude	
	over $-\pi \leq w \leq +\pi$.	
	(ii) What is the impulse response $h(n)$ of the system?	
	(iii) Identify the system.	