## III SEMESTER B.TECH. FINAL EXAMINATIONS JULY 2021 SUBJECT: ENGINEERING MATHEMATICS [MAT 2155]

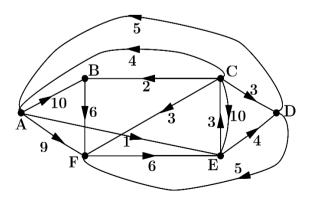
Date of Exam: 28-7-2021 Time of Exam: 9.00 AM – 12.00 PM Max. Marks: 40

## Instructions to Candidates:

Answer any 4 full questions & missing data may be suitably assumed.

- 1A. Prove that the number of partition of an integer n with exactly k parts is equal to the number of partition of n whose largest part is k.
- 1B. In how many ways can the letters of the word CALCULATE be rearranged without any two adjacent letters being the same?

(5+5)


- 2A. Let  $E(x_1, x_2, x_3) = (\overline{x_1} \land x_2 \land \overline{x_3}) \lor (x_1 \land \overline{x_2}) \lor (x_1 \land x_3)$  be a boolean expression over the two valued Boolean algebra  $\{0, 1\}$ . Express  $E(x_1, x_2, x_3)$  as a both disjunctive and conjunctive normal forms.
- 2B. For elements a and b in a Boolean Algebra, show that  $a \le b$  if and only if  $\bar{a} \lor b = 1$

(5+5)

- 3A. Show that if G is a finite group and H is a subgroup of G, then the order of H divides the order of G.
- 3B. Define subgroup of a group. Let G be a group and  $a, b \in G$ . Define the set  $H_b = \{bab^{-1} : a \in G\}$ . Then check if  $H_b$  is a subgroup of G. Justify your conclusion.

(5+5)

4A. Find the shortest path from A to all other vertices for the network given in the diagram below using Dijkstra's Algorithm.



4B. Show that a tree with p vertices has p-1 edges.

- 5A. Show that from  $(\exists x)(F(x)\land S(x)) \rightarrow (y)(M(y) \rightarrow W(y))$  and  $(\exists y)(M(y)\land \neg W(y))$ , the conclusion  $(x)(F(x) \rightarrow \neg S(x))$  follows.
- 5B. Check whether  $A \to \neg D$  is a valid conclusion from the premises  $A \to (B \lor C), B \to \neg A$  and  $D \to \neg C$ ? Justify. (5+5)
- 6A. Find the 30<sup>th</sup> permutation of five objects 1, 2,3, 4, 5 in Lexicographical and Fike's Order.
- 6B. Show that every cyclic group is abelian and check whether a group on 73 elements is Abelian? Justify your answer.

(5+5)