Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

III SEMESTER B.TECH. (MECH/IP/MT/AERO/AUTO) END SEMESTER EXAMINATIONS, MARCH 2021

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2151] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

4

3

Instructions to Candidates:

- ✤ Answer ALL the questions.
- **1A.** Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$; 0 < x < 5, t > 0, h = 1, u(x,0) = 20, u(0,t) = 0, u(5,t) = 100 for one time step.
- **1B.** Find the Fourier series expansion in $(-\pi, \pi)$ for the function defined by

$$f(x) = \begin{cases} (\pi + x), & -\pi \le x \le \frac{-\pi}{2} \\ \frac{\pi}{2}, & \frac{-\pi}{2} \le x \le \frac{\pi}{2} \\ (\pi - x), & \frac{\pi}{2} \le x \le \pi \end{cases}$$
3

1C. Solve
$$u_{xx} + u_{yy} = -81x^2y^2$$
; $u(0, y) = u(x, 0) = 0$ and $u(1, y) = u(x, 1) = 100$ with $h = \frac{1}{3}$.

- 2A. Solve y'' xy' = 0 with y(0) = 1, y(1) = 2 and $h = \frac{1}{4}$ using finite difference method. 4
- **2B.** Express the following function f(x) = (1 2|x|) as Fourier cosine series in the given interval $0 \le x \le 1$. Also sketch the periodic extension. **3**

2C. Solve
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$
; $0 < x < 2$, $t > 0$, $h = \frac{1}{2}$, for four time steps $u(x,0) = 0$,
 $\frac{\partial u}{\partial t}(x,0) = 100(2x - x^2)$, $u(0,t) = u(2,t) = 0$ **3**

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

- **3A.** Prove that $\mathbf{F} = (2xy^2 + yz)\mathbf{i} + (2x^2y + xz + 2z^2y)\mathbf{j} + (2zy^2 + xy)\mathbf{k}$ is a conservative force field. Find the scalar potential for *F*. Also find the work done in moving an object in this field from (0, 1, 2) and (3, 1, 4).
- Determine the constant term, the first cosine term and sine term of the Fourier **3B**. series expansion of y from the following data.

Х	0	45	90	135	180	225	270	315	2
У	2	3	1	1	0	1	1	3	J
•		2		2		2		2	

- **3C.** Find the Fourier sine and cosine transform of $f(x) = x^{a-1}$, a > 0.
- **4A.** Verify Green's theorem in the plane for $\oint_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C is the boundary of the region 4 defined by x = 0, y = 0 and x + y = 1.
- **4B.** Solve the PDE by suitable method. Given $\frac{\partial^2 z}{\partial x^2} 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$. 3
- **4C.** Evaluate $\int_{S} \mathbf{F} \cdot d\mathbf{s}$ where $\mathbf{F} = 4x\mathbf{i} 2y^{2}\mathbf{j} + z^{2}\mathbf{k}$ and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3.
- 5A. Verify Stokes' theorem for the vector field $F = (x^2 y^2)i + 2xyj$ over a rectangular box bounded by the planes x = 0 to x = a, y = 0 to y = b, 4 z = 0 to z = c with face z = 0 is removed.
- **5B.** Assuming the most general solution, solve the one dimensional wave equation $u_{tt} = c^2 u_{xx}$, in a string of length π whose ends are fixed, starts vibration with zero initial velocity and the initial deflection is $f(x) = 2\sin 2x - 4\sin 3x$, 3 $0 < x < \pi$.
- **5C.** Derive one dimensional heat equation using Gauss divergence theorem.

3

3

3