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III SEMESTER B.TECH. (MECH/IP/MT/AERO/AUTO)                                  
      END SEMESTER EXAMINATIONS, MARCH 2021 

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2151] 
REVISED CREDIT SYSTEM 
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1B. Find the Fourier series expansion in (−𝜋, 𝜋) for the function defined by                  
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1C. Solve 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −81𝑥
2𝑦2;  𝑢(0, 𝑦) = 𝑢(𝑥, 0) = 0 and 

𝑢(1, 𝑦) =   𝑢(𝑥, 1) =  100 with ℎ =
1

3
 . 
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2A. Solve 𝑦′′ − 𝑥𝑦′ = 0   with   𝑦(0) = 1, 𝑦(1) = 2 and ℎ =
1

4
 using finite 

difference method.    
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2B. Express the following function 𝑓(𝑥) = (1 − 2|𝑥|) as Fourier cosine series in 

the given interval 0 ≤ 𝑥 ≤ 1. Also sketch the periodic extension. 
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Instructions to Candidates: 

❖ Answer ALL the questions. 
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3A. Prove that 𝑭 =  (2𝑥𝑦2  + 𝑦𝑧) 𝒊 + (2𝑥2𝑦 + 𝑥𝑧 + 2𝑧2𝑦) 𝒋 + (2𝑧𝑦2  +   𝑥𝑦)𝒌   
is a conservative force field.  Find the scalar potential for 𝑭. Also find the work 

done in moving an object in this field from (0, 1, 2) and (3, 1, 4). 
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3B. Determine the constant term, the first cosine term and sine term of the Fourier 

series expansion of  𝑦 from the following data. 

 

x 0 45 90 135 180 225 270 315 

y 2 3
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3C. Find the Fourier sine and cosine transform of 𝑓(𝑥) = 𝑥𝑎−1, 𝑎 > 0. 
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4A. Verify Green’s theorem in the plane for  

 ∮ (3𝑥2 − 8𝑦2)𝑑𝑥 + (4𝑦 − 6𝑥𝑦)𝑑𝑦
𝐶

, where C is the boundary of the region 

defined by 𝑥 = 0, 𝑦 = 0 and 𝑥 + 𝑦 = 1. 
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4B. Solve the PDE by suitable method. Given 
𝜕2𝑧

𝜕𝑥2
− 2

𝜕𝑧

𝜕𝑥
+

𝜕𝑧

𝜕𝑦
= 0. 
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4C. Evaluate ∫ 𝑭. 𝑑𝑠
𝑆

 where 𝑭 = 4𝑥𝒊 − 2𝑦2𝒋 + 𝑧2𝒌 and S is the surface 

bounding the region 𝑥2 + 𝑦2 = 4, 𝑧 = 0 𝑎𝑛𝑑 𝑧 = 3. 
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5A. Verify Stokes’ theorem for the vector field 𝑭 = (𝑥2 − 𝑦2)𝒊 + 2𝑥𝑦𝒋 over a 

rectangular box bounded by the planes 𝑥 = 0 to 𝑥 = 𝑎, 𝑦 = 0 to 𝑦 = 𝑏, 

 𝑧 = 0 to 𝑧 = 𝑐 with face 𝑧 = 0 is removed. 

 

4 

5B. Assuming the most general solution, solve the one dimensional wave equation 

𝑢𝑡𝑡 = 𝑐
2𝑢𝑥𝑥 ,in a string of length 𝜋 whose ends are fixed, starts vibration with 

zero initial velocity and the initial deflection is 𝑓(𝑥) = 2sin2𝑥 − 4sin3𝑥,  
0 < 𝑥 < 𝜋.   
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5C. Derive one dimensional heat equation using Gauss divergence theorem. 
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