MANIPAL INSTITUTE OF TECHNOLOGY

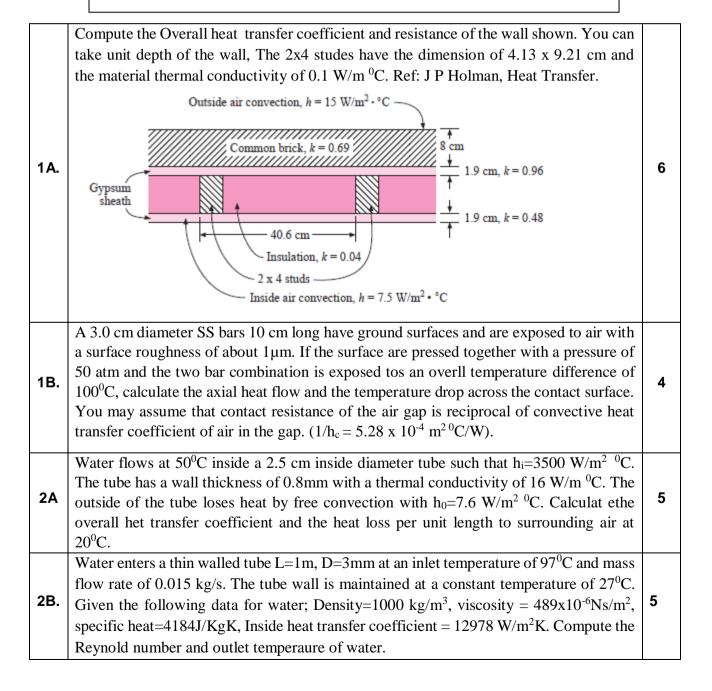
FOURTH SEMESTER B. TECH GRADE IMPROVEMENT/MAKEUP

(A constituent unit of MAHE, Manipal)

EXAMINATIONS AUG' 2021

SUBJECT: PRINCIPLES OF HEAT AND MASS TRANSFER

OPERATIONS [BIO 2254]


Date of Exam: 06-08-2021

Time of Exam: **9:00-12:00 PM**

Max. Marks: 40

Instructions to Candidates:

- Answer any FOUR full questions & missing data may be suitable assumed.
- ✤ Data handbook can be referred for any missing data/formula

ЗА	Consider a liquid stored in a container exposed to its saturated vapour at constant temperture of T_{sat} . The bottom surface of of the container is maintained at a constant temperature of T_s such that $T_s < T_{sat}$ while its side walls are insulated. The thermal conductivity k of th eliquid, latent heat of vaporization λ , density ρ are known. Assuming a linear temperature distribution in the liquid, prove that the expression for the growth of the liquid layer δ (t) due to condensation as a function of time t is given by (by energy balance for period of time t). $(\delta(t))^2 = \left[\frac{2k(T_{sat} - T_s)t}{\rho\lambda}\right]$	6
3В	Two paralle black plates $0.5x1.0m$ are separated by $0.5 m$ apart. One plate is maintained at $1000^{\circ}C$ and the other at $500^{\circ}C$. What is the net radiation exchange, in W/m ² , between the two plates? F ₁₂ =0.285. The value of Stefan Boltzmann constant is $5.67x10^{-8}$ W/m ² K ⁴	4
4A	Two very large parallel plates with emissivities 0.8 exchange heat. Find the amount of reduction in heat transfer, in W/m ² , when another shield with same ϵ , is placed between them, T ₁ =1000K and T ₂ =500K.	5
4B	Vapour bubbles are formed in the nucleate boiling regime at a frequency of 10 bubbles per second per nucleation. There are 100 nucleations sites per m^2 of heating area. The latent heat of vaporization and the density of vapour under operating condition are 1000kJ/kg and 1 kg/m ³ respectively. The diameter of each bubble in 10 ⁻³ m. Assuming that the entire heat is used for vapor generation, compute the heat flux in W/m ² of heating area.	5
5A	Air at 20°C ($\rho = 1.205 \text{ kg/m}^3$; v = 15.06 x 10-6 m ² /s; D = 4.166 x 10 ⁻⁵ m ² /s) flows over a tray (length = 320 mm, width = 420 mm) full of water with a velocity of 2.8 m/s. the total pressure of moving air is 1 atm and the partial pressure of water present in the air is 0.0068 bar. If the temperature on the water surface is 15°C, calculate the evaporation rate of water.	5
5B	Air is contained in a tyre tube of surface area 0.5 m^2 and wall thickness 10 mm. the pressure of air drops from 2.2 bar to 2.18 bar in a period of 6 days. The solubility of air in the rubber is 0.072 m^3 of air per m ³ of rubber at 1 bar. Determine the diffusivity of air in rubber at the operating temperature of 300 K if the volume of air in the tube is 0.028 m^3 .	5

6A	Air at 20°C, 40 % RH flows over a water surface at a velocity of 1.4 m/s; length parallel to flow is 200 mm. If average surface temperature is 16°C, calculate the amount of water evaporated per hour/m ² of the surface. Take: Partial pressure of water vapour at 20°C and 40 % RH, $P_{wa} = 0.011$ bar, The vapour pressure at 16°C and saturated, $P_{ws} = 0.017$ bar Viscosity of air = 16.38 x 10 ⁻⁶ kg/ms Density of air = 1.22 kg/m ³ , and Diffusion coefficient; $D = 0.256 \times 10^{-4} m^2/s$.	5
6B	Air at 1 atm, 25°C, containing small quantities of iodine flows with a velocity of 5.18 m/s inside a 3.048 cm diameter tube. Determine the mass transfer coefficient for iodine transfer from the gas stream to the wall surface. If C _m is the mean concentrate of iodine in kmol/m ³ in the air stream, determine the rate of deposition of iodine on the tube surface where the iodine concentration is zero. Take v = 1.58 x 10 ⁻⁵ m ² /s; D = 0.826 x 10 ⁻⁵ m ² /s. Note: If flow is turbulent, i.e. 4000 \leq Re \leq 60,000, then Sh = 0.023 Re ^{0.83} Sc ^{0.33} . If flow is laminar, i.e. Re \leq 2100, then Sh = 1.62 (Re Sc d/L) ^{1/3} .	5