Reg. No.

FOURTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION AUGUST 2021 SUBJECT: ELECTROMAGNETIC WAVES (ECE - 2252)

TIME: 2 HOURS

MAX. MARKS: 40

Instructions to candidates

- Answer any four full questions.
- Missing data may be suitably assumed.
- 1A. Represent the vector fields $\mathbf{B} = y\mathbf{a}_x x\mathbf{a}_y + z\mathbf{a}_z$, $\mathbf{F} = (2x+y)\mathbf{a}_x (y-4x)\mathbf{a}_y$, and $\mathbf{G} = 10\mathbf{a}_x 8\mathbf{a}_y + 6\mathbf{a}_z$ in cylindrical coordinate system.
- 1B. Given two vector fields $x^2 \mathbf{a}_x$ and $xy \mathbf{a}_x + y^2 \mathbf{a}_y$, determine the cross product between them.

(7+3)

- 2A. Given the electric flux density $\mathbf{D} = 6\rho \sin(\varphi/2)\mathbf{a}_{\rho} + 1.5\rho \cos(\varphi/2)\mathbf{a}_{\varphi} \text{ C/m}^2$, evaluate both sides of the divergence theorem for the region $\rho = 2\text{m}$, $0 < \varphi < \pi$, and 0 < z < 5m.
- 2B. Find the flux density at a point (2m, -3m, 6m) due to (a) a point charge of 5mC at (-2m, 3m, -6m), (b) a uniform line charge of ρ_L = 20mC/m on the *x* axis, and (c) a uniform surface charge of density ρ_S = 220 μC/m² on the *z* = -5m plane.

(5+5)

(5+5)

- 3A. Let the electric potential in a region be $100\rho\cos(\phi)/(z^2+1)$ V. Find the electric field and volume charge density at (1.5m, 2.6m, 2m).
- 3B. Derive an expression for the energy stored in a discrete charge configuration comprising of point charges. Extend the analysis to a case of continuous volume charge distribution.
- 4A. Evaluate both sides of the Stokes theorem for the surface r = 5m, $0 < \theta < 60^{\circ}$, and $0 < \varphi < 72^{\circ}$ and for the magnetic field $\mathbf{H} = 8r\sin(\varphi)\mathbf{a}_r + 21r\sin^2(\theta)\cos(\varphi)\mathbf{a}_{\varphi}$ A/m.
- 4B. A current filament of 5A in the a_y direction is parallel to y-axis at x = 2m, z = -2m. Find the magnetic field **H** at the origin.

(7+3)

- 5A. Show that for a uniform plane wave, electric as well as magnetic fields cannot have components along the direction of propagation.
- 5B. Derive expressions for transmittance and reflection coefficient for oblique incidence of *s*-polarized uniform plane wave impinging on an interface between two different dielectrics.

(4+6)

- 6A. Starting from an infinitesimal section of a transmission line, derive the transmission line equations and discuss their solutions.
- 6B. Derive expressions for the circular arcs which comprise the Smith Chart.

(5+5)