Reg. No.

FOURTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION AUGUST 2021 SUBJECT: LINEAR INTEGRATED CIRUITS (ECE - 2253)

TIME: 2 HOURS

MAX. MARKS: 40

Instructions to candidates

- Answer **any FOUR** full questions.
- Missing data may be suitably assumed.
- 1A. In the circuit shown in Fig. Q1A., the Op-amp is ideal.
 - i. Determine v_N , v_P and v_0 .
 - ii. Determine the value of the resistance R that, if connected between the inverting input pin of the op-amp and ground, causes v_0 to double.
- 1B. In the circuit shown in Fig. Q1B(i), $R_1 = 1k\Omega$, $R=10k\Omega$ and $C=0.1\mu$ F, Slew Rate = 0.5V/µs and $\pm V_{SAT} = \pm 12V$. Determine and plot the output voltage for the input voltage and circuit details specified in Fig. Q1B(ii).

(5+5)

- 2A. In the circuit shown in Fig. Q2A, the Op-amps are ideal. Derive the expression for the output voltage v_0 .
- 2B. In the circuit shown in Fig. Q2B., the Opamps are ideal.
 - i. Determine the output voltage V_{o} .
 - ii. Determine the current through R and R_{F} .

(5+5)

- 3A. In the filter circuit of Fig. Q3A, all resistors are $1k\Omega$ and capacitors are 0.1μ F. Determine the maximum and minimum values of cut-off frequency, Q and passband gain.
- 3B. Design a Butterworth filter circuit having the frequency response shown in Fig. Q3B(i). Use capacitance value of 0.1µF.

(5+5)

- 4A. In the circuit shown in Fig. Q4A, R_1 is varied from 0 to ∞ . With $V_{0sat} = \pm 12V$, plot $|V_P|$ and ΔV_T as a function of R_1 .
- 4B. In the circuit shown in Fig. Q4B, plot V_{01} and V_0 for the following cases. The output saturation voltage is $\pm 12V$.

i) $R_1 = R_2 = R_3 = 1k\Omega$ and $C = 0.1\mu F$

ii) $R_1 = 1k\Omega$ $R_2 = 10k\Omega$, $R_3 = 1k\Omega$ and $C = 1\mu F$

(5+5)

5A. Design a 555 timer based astable multivibrator to generate the following outputs. Select C=0.1 μ F.

i. Square wave signal of fixed frequency of 1KHz and 65%.duty cycle

ECE -2253

- ii. Square wave signal of frequency varying between 2KHz to 8KHz and fixed T_{ON} of 0.05msec
- 5B. For the circuit shown in Fig. Q5B determine the following:
 - i. Frequency of the output signal
 - ii. The variation in the output signal frequency, if V_C is varied between 5V and 7.5V.

(5+5)

- 6A. With the help of a block diagram and functional table, explain the operation of 8-bit successive approximation type ADC for converting an analog input of 5.655 volts to corresponding digital output. The full scale output is 10 volts.
- 6B. Design a binary weighted 5 bit DAC for the following specifications:
 With only LSB set, DAC output should be 0.3125V. Select V_{REF}=2V. What will be the full scale output voltage of the DAC.

$$(5+5)$$

Fig. Q1A

SI.	V _{in} (Volts)	SA	SB
No.			
1	0.5sin2π1000t	Open	Closed
2	2sin2π20000t	Open	Closed
3	0.5sin2π1000t	Closed	Open

Fig. Q1B(ii)

Fig. Q2B

n	Normalised Denominator Polynomials in Factored Form					
1	(1+s)					
2	(1+1.414s+s ²)					
3	(1+s)	(1+s+s ²)				
4	(1+0.765s+s ²)	(1+1.848s+s ²)				
5	(1+s)	(1+0.618s+s ²)	(1+1.618s+s ²)			
6	(1+0.518s+s ²)	(1+1.414s+s ²)	(1+1.932s+s ²)			
7	(1+s)	(1+0.445s+s ²)	(1+1.247s+s ²)	(1+1.802s+s ²)		
8	(1+0.390s+s ²)	(1+1.111s+s ²)	(1+1.663s+s ²)	(1+1.962s+s ²)		
9	(1+s)	(1+0.347s+s ²)	(1+s+s ²)	(1+1.532s+s ²)	(1+1.879s+s ²)	
10	(1+0.313s+s ²)	(1+0.908s+s ²)	(1+1.414s+s ²)	(1+1.782s+s2)	(1+1.975s+s ²)	

Fig. Q3B(ii)

Fig. Q4A

