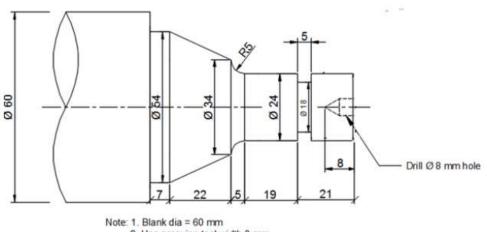


IV SEMESTER B. TECH (INDUSTRIAL & PRODUCTION ENGINEERING) END SEMESTER (GRADE IMPROVEMENT) EXAMINATION, AUGUST 2021 SUBJECT: MANUFACTURING AUTOMATION ENGINEERING (MME 2256) REVISED CREDIT SYSTEM

Time: 120 Minutes MAX. MARKS: 40

Note: Answer ANY FOUR FULL questions.

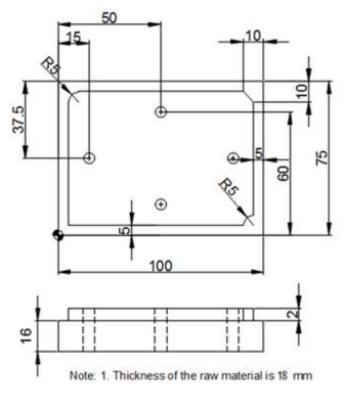

- 1A A double acting cylinder guides cylinder pins towards a measuring device.

 The pins are separated by means of a continuous to and fro movement. The oscillating motion can be started by means of a valve with selector switch. The duration of forward stroke and return stroke of the cylinder is to be adjustable.

 The cylinder is to remain in the forward end position for t = 5 seconds. Design a pneumatic circuit to automate the process.
- 1B With a neat sketch explain the working of a pneumatic pressure regulator. 3
- 1C With a neat sketch explain the construction and working of a 3/2 direction 3 control valve used in pneumatic systems.
- 2A A station uses conveyor system to check the presence of lids on cans. If a can without a lid is encountered, then the can must be pushed aside from the conveyor into a bin by a pneumatic cylinder. The lids and cans are interrogated by means of sensors. Design an electro pneumatic circuit for the process.
- 2B With the help of electro pneumatic circuit explain the latching circuit. 3
- 2C Identify and explain with a neat sketch the working of the component used in electro pneumatic systems which is used to detect the advanced and retracted end positions of the piston rod in linear actuators.

MME 2256 Page **1** of **3**

- 3A An electro pneumatic system requires a sensor to detect the presence of nonmetallic parts in the shop floor. Identify and explain the working of the component with the help of a neat sketch.
- 3B With the help of a pneumatic circuit explain the working of a one-way flow control valve.
- 3C What are the advantages of using compressed air in pneumatic systems? 3
- 4A With a neat sketch explain cylindrical and tapered roller bearing. 4
- 4B List and explain any three types of material handling equipment. 3
- 4C Sketch and explain loop layout group machine cell with semi integrated **3** handling system.
- 5A Write a CNC part program for the workpiece shown in Fig. 1.



2. Use grooving tool width 3 mm

Figure 1

- 5B List and explain Flexible Manufacturing System data files. 3
- 5C With a neat sketch explain the working of timing belt. 3
- 6A Write a short note on Material Requirement Planning. 4
- 6B Write a short note on multi-class part classification and coding system. 3

MME 2256 Page **2** of **3**

Tools to be used: 1.Ø 20 mm end mill 2.Ø 5 mm drill tool

Figure 2

MME 2256 Page **3** of **3**

MME 2256: Manufacturing Automation Engineering

1. Hydraulic systems

1.1. Force on the piston in a linear actuator (piston cylinder assembly)

$$\begin{aligned} \mathsf{F_E} &= p * A_P \\ p &= \mathsf{fluid} \; \mathsf{pressure} \; (\mathsf{N}) \\ p_R &= p * (A_P - A_R) \end{aligned}$$

$$\begin{aligned} F_R &= p * (A_P - A_R) \\ A_P &= \frac{\pi D_P^2}{4} \; \mathsf{piston} \; \mathsf{area} \; (\mathsf{m}^2) \\ A_R &= \frac{\pi D_R^2}{4} \; \mathsf{prod} \; \mathsf{area} \; (\mathsf{m}^2) \\ D_P \; \& \; D_R \; \mathsf{piston} \; \mathsf{and} \; \mathsf{rod} \; \mathsf{diameter} \; (\mathsf{m}) \end{aligned}$$

1.2. Velocity of piston in a linear actuator

$$V_{\rm E} = \frac{Q}{1000*A_P}$$

$$V_{\rm E} \& V_{\rm R} = \text{velocity of extension and retraction of the piston (m/min)}$$

$$Q = \text{Discharge (lpm)}$$

$$A_P = \frac{\pi D_P^2}{4} = \text{piston area (m}^2)$$

$$A_R = \frac{\pi D_R^2}{4} = \text{rod area (m}^2)$$

$$D_P \& D_R = \text{piston and rod diameter (m)}$$

1.3. Power generated by the actuator (kW)

Power =
$$\frac{F*v}{1000}$$
 $F = Force (N)$
 $v = velocity (m/s)$

2. Computer Numerical Control and programming

2.1. Codes for Turning Centre

G Codes	M Codes
G00 - POSITIONING (RAPID TRAVERSE)	M00 - PROGRAM STOP
G01 - LINEAR INTERPOLATION (FEED)	M01 - OPTIONAL STOP
G02 - CIRCULAR INTERPOLATION (CW)	M02 - PROGRAM RESET
G03 - CIRCULAR INTERPOLATION (ACW)	M03 - SPINDLE FORWARD
G20 - INCH DATA INPUT	M04 - SPINDLE REVERSE
G21 - METRIC DATA INPUT	M05 - SPINDLE STOP
G28 - REFERENCE POINT RETURN	M06 - AUTO TOOL CHANGE
G70 - FINISHING CYCLE	M08 - COOLANT ON
G71 - STOCK REMOVAL IN TURNING	M09 - COOLANT OFF
G72 - STOCK REMOVAL IN FACING	M13 - SPINDLE FORWARD COOLANT ON
G73 - PATTERN REPEATING	M14 - SPINDLE REVERSE COOLANT ON
G74 - PECK DRILLING	M30 - PROGRAM RESET REWIND
G76 - THREAD CUTTING CYCLE	M38 - DOOR OPEN
G90 - TURNING CYCLE	M39 - DOOR CLOSE
G94 - FACING CYLCE	M98 - SUB PROGRAM CALL
G98 - FEED PER MINUTE	M99 - SUB PROGRAM END
G99 - FEED PER REVOLUTION	

2.2. Codes for Vertical Machining Centre

G Codes	M Codes
G00 - POSITIONING (RAPID TRAVERSE)	M00 - PROGRAM STOP
G01 - LINEAR INTERPOLATION (FEED)	M02 - PROGRAM RESET
G02 - CIRCULAR INTERPOLATION (CW)	M03 - SPINDLE FORWARD
G03 - CIRCULAR INTERPOLATION (ACW)	M04 - SPINDLE REVERSE
G20 - INCH DATA INPUT	M05 - SPINDLE STOP
G21 - METRIC DATA INPUT	M06 - AUTO TOOL CHANGE
G28 - REFERENCE POINT RETURN	M08 - COOLANT ON
G40 - TOOL NOSE RADIUS	M09 - COOLANT OFF
COMPENSATION	M13 - SPINDLE FORWARD COOLANT ON
CANCEL	M14 - SPINDLE REVERSE COOLANT ON
G41 - TOOL NOSE RADIUS	M30 - PROGRAM RESET & REWIND
COMPENSATION	M38 - DOOR OPEN
LEFT	M39 - DOOR CLOSE
G42 - TOOL NOSE RADIUS	M70 - MIRROR ALONG X ON
COMPENSATION	M71 - MIRROR ALONG Y ON
RIGHT	M80 - MIRROR ALONG X OFF
G68 - CO-ORDINATE ROTATION	M81 - MIRROR ALONG Y OFF
G69 - CO-ORDINATE ROTATION CANCEL	
G73 - PECK DRILLING CYCLE	
G76 - FINE BORING	
G80 - CANNED CYCLE CANCEL	
G81 - DRILLING CYCLE	
G82 - DRILLING CYCLE, COUNTER	
BORING	
G84 - TAPPING CYCLE	
G90 - ABSOLUTE DIMENSIONING	
G91 - INCREMENTAL COMMAND	
G94 - FEED PER MINUTE	
G95 - FEED PER REVOLUTION	
G98 - RETURN TO INITIAL POINT IN	
CANNED CYCLE	
G99 - RETURN TO R (Reference point) IN	
CANNED CYCLE	