

| Reg. No. |  |  |  |  |  |
|----------|--|--|--|--|--|
|          |  |  |  |  |  |

## DEPARTMENT OF SCIENCES, III SEMESTER M.Sc (Applied Mathematics and Computing) END SEMESTER EXAMINATIONS, MARCH 2021

SUBJECT: Formal Language and Theory of computation [MAT 5001]

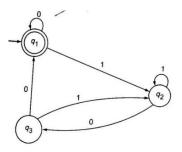
## (REVISED CREDIT SYSTEM-2017)

| Time: 3 Hours | Date:24.03.2021 | MAX. MARKS: 50 |
|---------------|-----------------|----------------|
|               |                 |                |

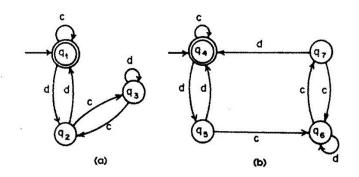
Note : All questions carry equal marks (3+3+4)

- 1A. Sketch and Describe the block diagram of a Finite automaton
- 1B. Prove that if L is regular then  $L^{T}$  is also regular. Give an example.
- 1C. Design FA which checks whether a given decimal number is divisible by four.

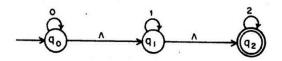
Verify the same for the number 456789 and write a corresponding path.


2A. Define Mealy machines.

With suitable explanation, construct an equivalent Machine for the given Machine and draw its transition diagram.


| State                 | i.p. a                | =0 | i.p. a=1              |   |  |
|-----------------------|-----------------------|----|-----------------------|---|--|
|                       | state o.p. state      |    | o.p.                  |   |  |
| $\rightarrow q_1$     | <b>q</b> <sub>3</sub> | 0  | $q_2$                 | 0 |  |
| q <sub>2</sub>        | $q_1$                 | 1  | $q_4$                 | 0 |  |
| <b>q</b> <sub>3</sub> | q <sub>2</sub>        | 1  | $q_1$                 | 1 |  |
| <b>q</b> <sub>4</sub> | $q_4$                 | 1  | <b>q</b> <sub>3</sub> | 1 |  |

- 2B. Is  $\Rightarrow$  an equivalence relation on  $(V_N \cup V_T)^*$ ?
- 2C. Show that the set  $L=\{a^p | p \text{ is a prime }\}$  is not regular.
- 3A. Let L be the set of all palindromes over {a,b}.Construct a grammar G generating L.


- 3B. State and prove Arden's theorem.
- 3C. Construct a regular grammar G generating the regular set represented by  $a^*b (a+b)^*$ .
- 4A. Construct a reduced grammar equivalent to the grammar G whose productions are  $S \rightarrow AB|CA$ ,  $B \rightarrow BC|AB$ ,  $A \rightarrow a$ ,  $C \rightarrow aB|b$
- 4B. Construct a regular expression corresponding to the following FA shown in figure using algebraic method.



4C. Define comparison method. Determine whether the given two machines are equivalent.



- 5A. Define Greibach normal form of a language. Convert the grammar  $S \rightarrow AB$ ,  $A \rightarrow BS|$  b,  $B \rightarrow SA|a$  into GNF.
- 5B. Show that the grammar  $S \rightarrow aB \mid ab, A \rightarrow aAB \mid a, B \rightarrow ABb \mid b$  is ambiguous
- 5C. Obtain an equivalent automaton without  $\in$  moves with proper explanation to the figure below.



\*\*\*\*\*