SDK

REG No

DEPARTMENT OF SCIENCES

FIRST SEMESTER M.Sc (PHYSICS) END SEMESTER EXAMINATION, FEBRUARY 2021

SUB: CLASSICAL MECHANICS (PHY- 4102)-Old Scheme
TIME: 3 Hrs. DATE: 10-02-2021 MAX. MARKS: 50

NOTE: ANSWER ALL FIVE FULL QUESTIONS.		
1A	Show that the total energy of a particle in a conservative field	is 3]
1B	Write the equations governing the particles in Atwood's machine. Solve them to get acceleration of the particles and tension in the string.	e 8]
1C	Show that kinetic energy of a system of particles is the sum of KE of cent of mass (c.m.) about a fixed point (O) and the KE of the system about to c.m.	re he [4]
2A. 2B	State Kepler's three laws of planetary motion. Prove the Kepler's 3rd la of motion. What do you mean by bounded & unbounded motion? How does a two-bounded reduce to a one-body problem in a central force field? explain.	4] dy
3A 3B 4A	Show that the angular acceleration is the same in the fixed and rotating frames.	5] 5] 4]
4B	Transform the coordinates of linear harmonic oscillator using to generating function $(\frac{1}{2})m\omega q^2$ cot Q, obtain the new Hamiltonian and her obtain its solution.	ice
4C 5A 5B	Define Poisson Bracket and show that a function whose Poisson Bracke with the Hamiltonian vanishes is a constant of motion.	2] t [5] [5]
	$(q,p) \rightarrow (Q,P)$ to be canonical show that $\frac{\partial P}{\partial q} = \frac{\partial p}{\partial Q} \& \frac{\partial P}{\partial p} = -\frac{\partial q}{\partial Q}$	