

DEPARTMENT OF BIOTECHNOLOGY I Sem- M.Tech Industrial Biotechnology BIO 5152: Advanced Bioseparation Processes END SEMESTER EXAMINATION -February 26, 2021

Time: 2.00 pm to 5.00 pm

Answer ALL questions

Marks: 50

1A	You are purifying a biomolecule for a pharmaceutical drug application. Would you	2m
	prefer a step that has (i) a high-fold purification and low yield or (ii) a low-fold	
	purification and high yield? Justify your answer.	
	What is the distance between two particles attracted to each other at the "secondary	
1B	minimum"? Assume, that the Debye radius is 0.5 nm.	3m
1C	A pilot-scale disc-stack centrifuge has 25 discs with inner and outer diameters 2 cm	5m
	and 10 cm, respectively. The half-cone angle is 35°. At a speed of 3000 rpm and	
	feed rate of 3.5 L/min, 70% of the cells are recovered. A bigger centrifuge needs to	
	be used for industrial treatment of 80 L/min. What operating speed is needed to	
	achieve the same sedimentation performance if the larger centrifuge contains 55	
	discs with outer diameter 15 cm, inner diameter 4.7 cm, and half-cone angle 45°?	
2A	State the principle of ion exchange chromatography.	3m
2B	How does the use of filter aids help in the process of filtration?	3m
	A rough analysis of cell contents suggests their cytoplasm contains the following by	
• •	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of	
2C	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of molecular weight 200; 4% is sugars of molecular weight 180; and 5% is salts like	4m
2C	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of molecular weight 200; 4% is sugars of molecular weight 180; and 5% is salts like NaCl. What is the osmotic pressure inside these cells relative to pure water at 37°C?	4m
2C 3A	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of molecular weight 200; 4% is sugars of molecular weight 180; and 5% is salts like NaCl. What is the osmotic pressure inside these cells relative to pure water at 37°C? Explain the difference between free settling and hindered settling.	4m 2m
2C 3A	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of molecular weight 200; 4% is sugars of molecular weight 180; and 5% is salts like NaCl. What is the osmotic pressure inside these cells relative to pure water at 37°C? Explain the difference between free settling and hindered settling. Proteins A and B have the precipitation rate constants	4m 2m
2C 3A	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of molecular weight 200; 4% is sugars of molecular weight 180; and 5% is salts like NaCl. What is the osmotic pressure inside these cells relative to pure water at 37°C? Explain the difference between free settling and hindered settling. Proteins A and B have the precipitation rate constants $\kappa_A = 5 \times 10^{57} \times e^{-380 \text{ kJ/RT}}$ per sec	4m 2m
2C 3A 3B	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of molecular weight 200; 4% is sugars of molecular weight 180; and 5% is salts like NaCl. What is the osmotic pressure inside these cells relative to pure water at 37°C? Explain the difference between free settling and hindered settling. Proteins A and B have the precipitation rate constants $\kappa_A = 5 \times 10^{57} \times e^{-380 \text{ kJ/RT}}$ per sec $\kappa_B = 4.2 \times 10^{64} \times e^{-415 \text{ kJ/RT}}$ per sec	4m 2m 3m
2C 3A 3B	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of molecular weight 200; 4% is sugars of molecular weight 180; and 5% is salts like NaCl. What is the osmotic pressure inside these cells relative to pure water at 37°C? Explain the difference between free settling and hindered settling. Proteins A and B have the precipitation rate constants $\kappa_A = 5 \times 10^{57} \times e^{-380 \text{ kJ/RT}}$ per sec $\kappa_B = 4.2 \times 10^{64} \times e^{-415 \text{ kJ/RT}}$ per sec If you have a solution with equal activities of each protein, what will be the activity	4m 2m 3m
2C 3A 3B	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of molecular weight 200; 4% is sugars of molecular weight 180; and 5% is salts like NaCl. What is the osmotic pressure inside these cells relative to pure water at 37°C? Explain the difference between free settling and hindered settling. Proteins A and B have the precipitation rate constants $\kappa_A = 5 \times 10^{57} \times e^{-380 \text{ kJ/RT}}$ per sec $\kappa_B = 4.2 \times 10^{64} \times e^{-415 \text{ kJ/RT}}$ per sec If you have a solution with equal activities of each protein, what will be the activity after 30 min at 30°C?	4m 2m 3m
2C 3A 3B	A rough analysis of cell contents suggests their cytoplasm contains the following by weight: 2% is proteins of average molecular weight 45,000; 3% is soluble lipids of molecular weight 200; 4% is sugars of molecular weight 180; and 5% is salts like NaCl. What is the osmotic pressure inside these cells relative to pure water at 37°C? Explain the difference between free settling and hindered settling. Proteins A and B have the precipitation rate constants $\kappa_A = 5 \times 10^{57} \times e^{-380 \text{ kJ/RT}}$ per sec $\kappa_B = 4.2 \times 10^{64} \times e^{-415 \text{ kJ/RT}}$ per sec If you have a solution with equal activities of each protein, what will be the activity after 30 min at 30°C? Downstream process engineer wants to separate biomolecules using reverse micellar	4m 2m 3m

	extraction process and also factors affecting protein solubilisation.	
4 A	We are carrying out the ultrafiltration of chymotrypsin in a spiral wound module at a rate of 1.3 x 10^{-3} cm/sec. The solution concentration is 0.44 wt%, the protein's diffusion coefficient is 9.5 x 10^{-7} cm ² /sec, and the boundary layer is about 180 X 10^{-4} cm thick. How high is the surface concentration?	3m
4B 5A	In a steady state, counter current dialyzer of rectangular cross section, urea is removed by pure water as dialysate. Inlet feed concentration is 1500 mg/L, Feed and dialysate flow rates are 18 L/h and 90 L/h, respectively. The overall mass transfer coefficient is 10^{-6} m/s. Feed and dialysate chambers are identical in shape. Width of each channel is 5 mm and height 5 mm. In the feed side, the urea concentration has to be reduced from 1500 mg/L (inlet) to 300 mg/L (outlet). Find the membrane area required. Neglect mass transfer resistances on both sides. A modified Dextran will adsorb up to $8x10^{-8}$ mol of immunoglobin G per cm ³ Dextran. The adsorption follows a Langmuir isotherm with K = $2x10^{-8}$ mol/ltr. How much dextran do you need to adsorb 95% of the protein in 1.2 litre of solution	7m 3m
	initially containing 4x10 ⁻⁶ mol/ltr.	
5B	An adsorption column with a diameter of 2.0 cm and a bed height of 5.8 cm was used to isolate trypsin. The concentration of trypsin in the feed was 0.19 mg/mL. The external void fraction in the bed was 0.35. The bulk density of the adsorbent is 1.03 g/cm^3 . The volumes at breakthrough and exhaustion are 150 and 450 cm ³ , respectively. Estimate the loading capacity of the adsorbent for trypsin.	3m
5C	Design engineer want to develop antibiotic extraction process using single and multiple stage batch configuration. Explain the operating principle, pros and cons of each process.	4m