MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

I SEMESTER M.TECH. (BIOTECHNOLOGY/CHEMICAL) END SEMESTER EXAMINATIONS, MARCH 2021

SUBJECT: MATHEMATICAL & NUMERICAL TECHNIQUES IN CHEMICAL AND BIOLOGICAL ENGINEERING [MAT- 5158]

REVISED CREDIT SYSTEM

	Time: 3 Hours Date: 05-03			05-03-202	1	K. MARKS: 50				
	Instructions to Candidates:									
	 Answe 	er ALL t	he questions	5.						
1A.	Using Jacobi's method find all the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 1 & -2 & 4 \\ -2 & 5 & -2 \\ 4 & -2 & 1 \end{bmatrix}$. Carryout two iterations.									
1B.	Solve: $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le 2$, $t > 0$. Given $u(x, 0) = 100 \sin \frac{\pi}{2} x$ $u(0,t) = u(2,t) = 0, t > 0$ Compute $u(x, t)$ for one time step by Crank-Nicolson method. Take $h = \frac{1}{2}$.									
1C.	Using Hessian matrix find the extreme value of $f(x_1,x_2)=4x_1+6x_2-2x_1x_2-2x_1^2-2x_2^2$.									
2A.	Using Gauss-Newton algorithm fit the function $f(x; a_0, a_1) = a_0 (1 - e^{-a_1 x})$ to the following data. Take $a_0 = 1, a_1 = 1$. x 0.25 0.75 1.25 1.75 2.25 y 0.28 0.57 0.68 0.74 0.79									
2B.	Solve the system of equations $10x-2y-3z = 205$; $-2x+10y-2z = 15$ -2x-y+10z = 120 by Relaxation Method and carry out three iterations									
2C.	Using Taylor series method of third order find y at $x=0.1$ and $x=0.2$ by solving the equation $y'=x+y$, $y(0)=1$.									

Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

3A.	Perform two iterations of the multivariable Newton – Raphson method to solve the system of equations $x^2 + xy + y^2 = 7$; $x^3 + y^3 = 9$. Take								
	$x_0 = 1.5, y_0 = 0.5.$								
3B.	Solve the system of equations $2x+3y+z=9$; $x+2y+3z=6$; 3x+y+2z=8 by LU decomposition Method.								
3C.	Solve $y^{(iv)} + 81y = 81x^2$. $y(0) = y(1) = y''(0) = y''(1) = 0$, with $h = \frac{1}{3}$ by finite difference method.								
4A.	Consider the boundary value problem $y'' + y = x$, $0 < x < 1$, $y(0)=0$, $y(1) = 0$. Find y (0.5) by using least square method.								
4B.	Evaluate: $\int_{0}^{1} \frac{x^2}{1+x^3} dx$ by Simpson's 1/3 rule. Take h = 1/4. Compare the error with the exact value.								
4C.	Find the largest eigen value and the corresponding eigen vector of								
	$A = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -20 & 4 & -2 \end{bmatrix}$. Carryout three iterations taking $X^{(0)} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.	3							
5A.	Using Gram Schmidt orthogonalization obtain the first three orthogonal polynomials $f_0(x)$, $f_1(x)$ and $f_2(x)$ in (-1,1) with respect to the weight function w(x)=1. Using these polynomials obtain the least square approximation of second degree for f(x) = e ^x on [-1,1].								
5B.	Perform two iterations of the Birge-Vieta method to find the root of the equation $2x^3-5x+1=0$. Take $p_0 = 0.5$.								
	Use the method of Steepest ascent								
5C	minimize: $f(x_1, x_2) = (x_1 - \sqrt{5})^2 + (x_2 - \pi)^2 + 10$. Take $X_0 = [6.597 5.891]^T$.								
	Carryout two iterations.								