Reg. No.				

I SEMESTER M.TECH. (EE) END SEMESTER EXAMINATIONS

FEBRUARY 2021

SUBJECT: APPLIED ENVIRONMENTAL CHEMISTRY AND MICROBIOLOGY [CIE 5183]

Date of Exam: 24/02/2021

Time of Exam: 2 pm-5 pm

Max. Marks: 50

Instructions to Candidates:

❖ Answer ALL the questions & missing data may be suitably assumed

1 4 1				20 80		
1A.	i) With a suitable example explain pseudo-order reaction.			(03)	CO1	
9	ii) Write a short note on Rate Law and Le Chateliers Principle.			(02)		
1B.	Strontium 90 (90Sr) is a radioactive nuclide of public health significance and has				(02)	C01
	a half-life of 2	9 years. How long wo	ould a given amount of	Sr need to be	()	
	stored to obtain	a 99.9 percent reductio	n in quantity?			
L	8		•	- "		
1C.	Explain the rule	s for the calculation of	the oxidation number of c	ompounds.	(03)	CO1
-				ė .		
2A.	An adsorption	study was conducted	by adding varying amou	nts of granular	(05)	CO2
	activated carbon	1 (GAC) to a series of	f seven flasks containing	1 litre of feed		
	water used in s	0.9 mg/L. The				
	flasks were agit					
	were determined	d. Plot the Freundlich	isotherms for the data p	resented below		
	and determine th					
]]		
ĺ		Mass of GAC added (g)	Final TOC (mg/L)	·		
100		Ω	0 77	1		
A8		0.2	0.77	s) = 40		
Si .		0.5	0.65			
NC III		0.5 2.0	0.65	e e		
a:		0.5 2.0 5.0	0.65 0.32 0.19	8		
		0.5 2.0 5.0 10	0.65 0.32 0.19 0.14			
	51	0.5 2.0 5.0	0.65 0.32 0.19 0.14 0.09	2 - 0 20		
		0.5 2.0 5.0 10 20 50	0.65 0.32 0.19 0.14 0.09 0.06			
2B.	Derive the exp	0.5 2.0 5.0 10 20 50	0.65 0.32 0.19 0.14 0.09 0.06	of solute from	(05)	CO2
2B.	Derive the exp.	0.5 2.0 5.0 10 20 50	0.65 0.32 0.19 0.14 0.09	of solute from	(05)	CO2
= -	wastewater samp	0.5 2.0 5.0 10 20 50 ression for efficiency ple after nth extraction.	0.65 0.32 0.19 0.14 0.09 0.06 of solvent extraction of		(05)	CO2
2B. 3A.	wastewater samp	0.5 2.0 5.0 10 20 50 ression for efficiency ple after nth extraction.	0.65 0.32 0.19 0.14 0.09 0.06			CO2
3A.	With a neat sketc	0.5 2.0 5.0 10 20 50 ression for efficiency ele after nth extraction.	0.65 0.32 0.19 0.14 0.09 0.06 of solvent extraction extraction of solvent extraction ex	n colloids.	(05)	3
3A.	With a neat sketc	0.5 2.0 5.0 10 20 50 ression for efficiency ele after nth extraction.	0.65 0.32 0.19 0.14 0.09 0.06 of solvent extraction of	n colloids.		3

	enzymatic reactions.			
4A.	With a neat sketch explain the bacterial growth curve.		CO4	
4B.	B. Explain the morphological characteristics (shapes and arrangements) of bacterial cells with neat sketches.			
5A.	A coagulation treatment plant with a flow of 0.5 m ³ /sec is dosing alum at 23 mg/L. No other chemicals are being added. The raw water suspended solids concentration is 37 mg/L. The effluent suspended solids concentration is measured as 12 mg/L. The sludge content is 1 percent and density of sludge solids is 3.01 t/m ³ . What volume of sludge must be disposed of each day?	(05)	CO5	
5B.	Calculate the annual cost of lime and soda for treating 70,000 litres of water per day, if water contains the following impurities: CaCO ₃ =280 ppm Mg(HCO ₃) ₂ =100 ppm CaSO ₄ =110 ppm MgCl ₂ =138 ppm MgSO ₄ =80 ppm Purity of lime is 85% and soda is 100%. Lime costs Rs. 80 per kg and that of	(05)	CO5	
	soda for Rs. 400 per kg.			