Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL

(A constituent unit of MAHE, Manipal)

I SEMESTER M.TECH. (ENVIRONMENTAL ENGINEERING) END SEMESTER EXAMINATIONS, MARCH-2021 SOLID AND HAZARDOUS WASTE MANAGEMENT [CIE 5184]

Date of Exam: 01-03-2021

Time of Exam: 2pm to 5pm

Max. Marks: 50

Instructions to Candidates:

- ❖ Answer ALL the questions
- Missing data may be suitably assumed

a) b) c)	Collection frequency Use of kitchen grinders		he generation rates of Mu	ino ipu	04	CO1
Describe <i>any one</i> landmark episodes that propelled proactive approach towards dealing with Hazardous waste.				02	CO1	
List 2 examples each in organic and hazardous waste components in typical MSW			02	CO1		
		Wet Mass (kg)	Typical "As Discarded" Energy Content (MJ/kg)			501
	Food Waste	20	4.65	04		
	Paper	50	16.75			
	Cardboard	8	16.3		0.4	
	Plastics	6	32.6		U4	CO1
	Garden Trimmings	6	6.5			
	Wood	5	18.6			
	Tin Cans	5	0.7			
	a) b) c) d) Descr.toward List 2 typica	a) Geographic location b) Collection frequency c) Use of kitchen grinders d) Legislation Describe any one landmark e towards dealing with Hazardon List 2 examples each in orgatypical MSW The solid waste from a city con in the below table. Component Food Waste Paper Cardboard Plastics Garden Trimmings Wood	a) Geographic location b) Collection frequency c) Use of kitchen grinders d) Legislation Describe any one landmark episodes the towards dealing with Hazardous waste. List 2 examples each in organic and he typical MSW The solid waste from a city comprises of in the below table. Wet Mass Component (kg) Food Waste 20 Paper 50 Cardboard 8 Plastics 6 Garden Trimmings 6 Wood 5	a) Geographic location b) Collection frequency c) Use of kitchen grinders d) Legislation Describe any one landmark episodes that propelled proactive are towards dealing with Hazardous waste. List 2 examples each in organic and hazardous waste componing typical MSW The solid waste from a city comprises of following components as in the below table. Wet Typical "As Discarded" Energy Component (kg) Content (MJ/kg) Food Waste 20 4.65 Paper 50 16.75 Cardboard 8 16.3 Plastics 6 32.6 Garden Trimmings 6 6.5 Wood 5 18.6	a) Geographic location b) Collection frequency c) Use of kitchen grinders d) Legislation Describe any one landmark episodes that propelled proactive approach towards dealing with Hazardous waste. List 2 examples each in organic and hazardous waste components in typical MSW The solid waste from a city comprises of following components as given in the below table. Wet Typical "As Discarded" Energy Content (MJ/kg) Food Waste 20 4.65 Paper 50 16.75 Cardboard 8 16.3 Plastics 6 32.6 Garden Trimmings 6 6.5 Wood 5 18.6	a) Geographic location b) Collection frequency c) Use of kitchen grinders d) Legislation Describe any one landmark episodes that propelled proactive approach towards dealing with Hazardous waste. List 2 examples each in organic and hazardous waste components in typical MSW The solid waste from a city comprises of following components as given in the below table. Wet Typical "As Discarded" Energy Content (MJ/kg) Food Waste 20 4.65 Paper 50 16.75 Cardboard 8 16.3 Plastics 6 32.6 Garden Trimmings 6 5.5 Wood 5 18.6

			dies
2B	Differentiate between direct discharge and storage transfer stations and explain about sanitary requirements of transfer station	04	CO2
2C	Draw a neat labeled diagram of shredder and magnet system of waste processing	02	CO2
3A	Differentiate between Positive and Negative approaches used in waste sorting	02	CO2
3B	Differentiate between Windrow composting system and in vessel composting system	02	CO3
3C	If the aerobic stabilization of municipal solid waste occurs as per the following equation: $C_aH_bO_cN_d + \frac{4a+b-2c-3d}{4}O_2 \longrightarrow aCO_2 + \frac{b-3d}{2}H_2O + dNH_3$ Assuming the air contains 20% oxygen by weight and density of air is 1.2 kg/m³, then determine the mass and volume of air required to completely oxidize 1 ton of waste having the chemical equation C_{60} H_{120} O_{30} N_3 . Neglect oxygen required for stabilization of ammonia.	04	CO3
3D	Define the term "Storage" with reference to hazardous waste management and mention the maximum period of storage for the collected hazardous waste	02	CO3
4A	List and explain the methods of estimating the gas production potential of existing landfill.	06	CO4
4B	Write the objectives of the Environmental monitoring system of a landfill and name the zones in which environmental monitoring is carried out	04	CO4
5A.	What is leachate and explain its formation process	04	CO4
5B	In absence of readily available data, how would you estimate the waste quantity in a landfill?	02	COS
5C	Briefly explain decontamination step in the case of radioactive waste management and name few typical decontaminants used	04	COS