
| Reg. No.  |  |     |  |  | -03 | 12 |   |
|-----------|--|-----|--|--|-----|----|---|
| iteg. No. |  | - 6 |  |  |     | 7  | L |



## I SEMESTER M.TECH. (Structures.) END SEMESTER EXAMINATIONS

FEBRUARY 2021

## SUBJECT: ADVANCED MECHANICS OF SOLIDS [CIE 5171] Time of Exam: 2PM-5PM

Date of Exam: 22-02-2021

Max. Marks: 50

## Instructions to Candidates:

Answer all the questions

Any missing data may be suitably assumed

| The state of a stress at a point in a body is given by,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                         |                                                                                                                                                                                              |     |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|
| and corresponding planes.  The general displacement fields in a body in Cartesian coordinate system is given by, u = 3y²x + x²; v = yz + 3xy; w = xz² + 4xy². Find strain tensor and the linear strain at the point (-2, 2, 2) in the direction (0.56, -0.13, -0.819).  A simply supported beam of length '1' and depth 'd' with unit thickness is subjected to a concentrated force at the mid span. Using Airy's stress function determine the stresses in the beam. Assume the coordinate origin at the left-hand support.  The data for a strain rosette is given as,  E <sub>0°</sub> = 600 × 10 <sup>-6</sup> , ∈ <sub>45°</sub> = −920 × 10 <sup>-6</sup> , ∈ <sub>90°</sub> = −300 × 10 <sup>-6</sup> . Find the principal planes and their directions.  Derive the equilibrium equation for a 2D - polar coordinate system corresponding to radial direction.  A simply supported rectangular plate of dimension a×b with thickness 't' subjected to a line load of intensity q₀. Using the Navier's solution technique obtain expression for the deflection of the plate.  Obtain the equilibrium equations corresponding to transverse direction (z-direction) and curved direction (θ-direction) for a curved plate subjected to a general transverse loading q(r,θ).  4B. Explain the classification of shells.  5  What is a shell element? What are the assumptions made in thin shell theory?  With a neat sketch show the stress resultants in a thin shell and derive the expressions |                                                                                                                                                                                           | -25 -65 -45<br>-65 30 20 MPa<br>-45 20 45                                                                                                                                                    | 6   | CO1  |
| <ul> <li>The general displacement fields in a body in Cartesian coordinate system is given by, u = 3y²x + x²; v = yz + 3xy; w = xz² + 4xy². Find strain tensor and the linear strain at the point (-2, 2, 2) in the direction (0.56, -0.13, -0.819).</li> <li>A simply supported beam of length '1' and depth 'd' with unit thickness is subjected to a concentrated force at the mid span. Using Airy's stress function determine the stresses in the beam. Assume the coordinate origin at the left-hand support.</li> <li>The data for a strain rosette is given as,</li> <li>E₀⁰ = 600 × 10⁻⁶, E₄₅⁰ = −920 × 10⁻⁶, E₃₀⁰ = −300 × 10⁻⁶. Find the principal planes and their directions.</li> <li>Derive the equilibrium equation for a 2D - polar coordinate system corresponding to radial direction.</li> <li>A simply supported rectangular plate of dimension a×b with thickness 't' subjected to a line load of intensity q₀. Using the Navier's solution technique obtain expression for the deflection of the plate.</li> <li>Obtain the equilibrium equations corresponding to transverse direction (z-direction) and curved direction (θ-direction) for a curved plate subjected to a general transverse loading q(r,θ).</li> <li>Explain the classification of shells.</li> <li>What is a shell element? What are the assumptions made in thin shell theory?</li> <li>With a neat sketch show the stress resultants in a thin shell and derive the expressions</li> </ul>                  |                                                                                                                                                                                           |                                                                                                                                                                                              | _   | 55 Q |
| <ul> <li>A simply supported beam of length 'l' and depth 'd' with unit thickness is subjected to a concentrated force at the mid span. Using Airy's stress function determine the stresses in the beam. Assume the coordinate origin at the left-hand support.</li> <li>The data for a strain rosette is given as,</li> <li>2B.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T. u                                                                                                                                                                                      | The general displacement fields in a body in Cartesian coordinate system is given by, $x = 3y^2x + x^2$ ; $y = yz + 3xy$ ; $y = xz^2 + 4xy^2$ . Find strain tensor and the linear strain at  | 4   | CO2  |
| The data for a strain rosette is given as,  2B.  ∈ <sub>0</sub> ° = 600 × 10 <sup>-6</sup> , ∈ <sub>45</sub> ° = −920 × 10 <sup>-6</sup> , ∈ <sub>90</sub> ° = −300 × 10 <sup>-6</sup> . Find the principal planes and their directions.  3A. Derive the equilibrium equation for a 2D - polar coordinate system corresponding to radial direction.  A simply supported rectangular plate of dimension a×b with thickness 't' subjected to a line load of intensity q₀ Using the Navier's solution technique obtain expression for the deflection of the plate.  Obtain the equilibrium equations corresponding to transverse direction (z-direction) and curved direction (θ-direction) for a curved plate subjected to a general transverse loading q(r,θ).  4B. Explain the classification of shells.  5  5  5A. What is a shell element? What are the assumptions made in thin shell theory?  With a neat sketch show the stress resultants in a thin shell and derive the expressions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A simply supported beam of length 'l' and depth 'd' with unit thickness is subjected to a concentrated force at the mid span. Using Airy's stress function determine the                  |                                                                                                                                                                                              |     | CO2  |
| <ul> <li>3A. Derive the equilibrium equation for a 2D - polar coordinate system corresponding to radial direction.</li> <li>3B. A simply supported rectangular plate of dimension a×b with thickness 't' subjected to a line load of intensity q₀. Using the Navier's solution technique obtain expression for the deflection of the plate.</li> <li>Obtain the equilibrium equations corresponding to transverse direction (z-direction) and curved direction (θ-direction) for a curved plate subjected to a general transverse loading q(r,θ).</li> <li>4B. Explain the classification of shells.</li> <li>5</li> <li>What is a shell element? What are the assumptions made in thin shell theory?</li> <li>With a neat sketch show the stress resultants in a thin shell and derive the expressions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3, ∈                                                                                                                                                                                      | The data for a strain rosette is given as,<br>$\epsilon_{0^0} = 600 \times 10^{-6}$ , $\epsilon_{45^0} = -920 \times 10^{-6}$ , $\epsilon_{90^0} = -300 \times 10^{-6}$ . Find the principal | 4   | CO1  |
| <ul> <li>A simply supported rectangular plate of dimension a×b with thickness 't' subjected to a line load of intensity q₀. Using the Navier's solution technique obtain expression for the deflection of the plate.</li> <li>Obtain the equilibrium equations corresponding to transverse direction (z-direction) and curved direction (θ-direction) for a curved plate subjected to a general transverse loading q(r,θ).</li> <li>Explain the classification of shells.</li> <li>What is a shell element? What are the assumptions made in thin shell theory?</li> <li>With a neat sketch show the stress resultants in a thin shell and derive the expressions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Derive the equilibrium equation for a 2D - polar coordinate system corresponding to                                                                                                       |                                                                                                                                                                                              | 5 - | CO3  |
| <ul> <li>Obtain the equilibrium equations corresponding to transverse direction (z-direction) and curved direction (θ-direction) for a curved plate subjected to a general transverse loading q(r,θ).</li> <li>Explain the classification of shells.</li> <li>What is a shell element? What are the assumptions made in thin shell theory?</li> <li>With a neat sketch show the stress resultants in a thin shell and derive the expressions</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A simply supported rectangular plate of dimension a×b with thickness 't' subjected to a line load of intensity q <sub>0</sub> Using the Navier's solution technique obtain expression for |                                                                                                                                                                                              | 5   | CO4  |
| 4B. Explain the classification of shells.  5A. What is a shell element? What are the assumptions made in thin shell theory?  With a neat sketch show the stress resultants in a thin shell and derive the expressions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Obtain the equilibrium equations corresponding to transverse direction (z-direction) and curved direction (θ-direction) for a curved plate subjected to a general transverse              |                                                                                                                                                                                              | 5   | CO4  |
| What is a shell element? What are the assumptions made in thin shell meory?  With a neat sketch show the stress resultants in a thin shell and derive the expressions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                              | 5   | CO5  |
| With a neat sketch show the stress resultants in a thin shell and derive the expressions corresponding to normal forces and shear forces (both in-plane variation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A. What is a shell element? What are the assumptions made in thin shell theory?                                                                                                           |                                                                                                                                                                                              |     | CO5  |
| variation across depth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B. corresponding to normal forces and shear forces (both in-plane variation and                                                                                                           |                                                                                                                                                                                              | 7   | CO5  |