

I SEMESTER M.TECH. (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, February 2021

SUBJECT: STRUCTURAL DYNAMICS (CIE - 5174)

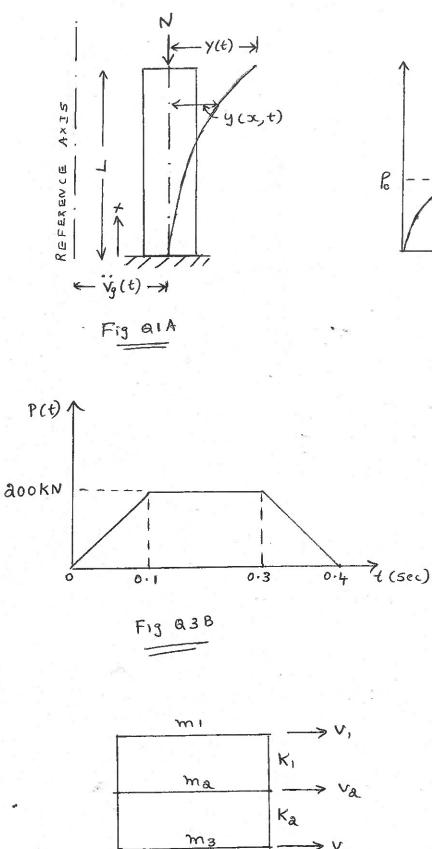
REVISED CREDIT SYSTEM (26 / 2 / 2021)

Time: 3 Hours

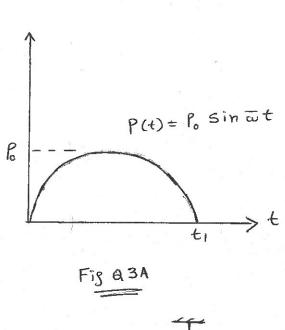
MAX, MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.


1A.	The tower shown in Fig. Q1A is having a uniform mass of m per unit length and constant EI. Formulate the equation of motion if the tower is subjected to a base excitation $\ddot{V}_g(t)$. Take $m(x) = m$ and EI = constant. Use $\psi(x) = 1 - \cos \frac{\pi x}{2L}$	5	CO1
1B.	An undamped SDOF system is subjected to an external harmonic force of $P_0 \sin \overline{\omega} t$. Derive expression for resonant response for initial condition at $t=0$, $V(t)=0$ and $\dot{v}(t)=0$. Also show that in this case the response continues to grow by the amount π .	5	CO2
2A.	An underdamped SDOF system is subjected to an external harmonic force of $P_0 \sin \overline{\omega}$ t. Derive expression for response for initial condition at $t=0$, $V(t)=V_0$ and $\dot{v}(t)=\dot{v}_0$	5	CO2
2B.	A simple beam supports at its center a machine having a weight of 200 kN. The beam is made of two beams of clear span 4 m and each having $I = 5 \times 10^7$ mm ⁴ . The motor runs at 350 rpm and its rotor is out of balance to the extent of 30 kg and at a radius of $e = 25$ mm. What will be the amplitude of the steady state response if the equivalent viscous damping is assumed 10% of the critical? $E = 200$ kN/ mm ² .	5	CO2
3A.	A sine wave impulse of duration t_1 seconds (Fig. Q3A) is acting on a SDOF system. Derive expressions for the response at $t < t_1$ and $t > t_1$. Use the initial condition as at $t = 0$ V(t) = 0 and \dot{v} (t) = 0. Determine also the maximum response in the free vibration era.	5	CO3

Reg. No.			



3B.	Using rectangular rule for numerical evaluations of Duhamel's integral determine the dynamic response of SDOF system subjected to a blast loading shown in Fig. Q3B. The physical properties are W = 20000 N and K = 1000 kN/m. Take $\Delta \tau = 0.05$ sec.				
4A.	For the three degree lumped mass system shown in Fig. Q4A, obtain the natural frequencies and the modes of vibration. Use classical method.				
4B.	Write a note on orthogonality relationship				
5A.	For the three storey building shown in Fig. Q5A, determine the displaced at time $t=\frac{2\pi}{\omega_1}$. Its undamped vibration mode shapes and frequencies are given below. The structure is set into free vibration by displacing the floors as follows: $V_1=3\text{mm}$, $V_2=-8\text{ mm}$, $V_3=3\text{ mm}$ and then releasing them suddenly at time $t=0$. Take $m_1=1000\text{ kg}$, $m_2=2000\text{ kg}$, $m_3=3000\text{ kg}$, $K_1=400\text{ kN/m}$, $K_2=800\text{ kN/m}$, and $K_3=1200\text{ kN/m}$, $M_2=1200\text{ kN/m}$, $M_3=1200\text{ kN/m}$, $M_3=1200$				
5B.	Treating the simply supported beam of uniform cross section as continuous systems obtain expression for frequency and vibration shape.	5	CO5		

20

1

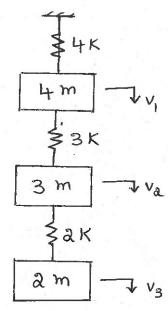


Fig Q4A

Fig. Q5A

K₃