Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

SEMESTER M. TECH END SEMESTER EXAMINATIONS, MARCH - 2021

SUBJECT: APPLIED NUMERICAL METHODS-II [MAT-5155]

REVISED CREDIT SYSTEM (05/03/2021)

Time: 3 Hours

MAX. MARKS: 50

	Instructions to Candidates:							
1.	Answer ALL the questions.	2. All questions carries equal marks.						

Using forward difference formula. Find the sum of $S_n = 1^3 + 2^3 + 3^3 + \dots + n^3$ 3 1A. 3 1B. Solve the following equations by Cholesky method: x + 2y + 3z = 5; 2x + 8y + 22z = 6; 3x + 22y + 82z = -10Using Adam's- Bashforth method, obtain the solution of $\frac{dy}{dx} = \frac{1}{2} xy$ at x = 0.4 for the data given below 4 1C. 0.1 0.2 0.3 0 х 1.0025 1.0101 1.0228 1 v 3 2A. Solve for a positive root of $3x = \cos x + 1$ by Newton-Raphson method. Using Newton's divided difference formula, evaluate f(8) and f(15) for the data given 3 below 2B. 4 5 7 10 11 13 х 48 100 294 900 1210 2028 v Perform two iterations of Birge-Vieta method to find the smallest positive root of the 4 2C. polynomial $2x^3 - 5x + 1 = 0$. Take the initial approximation as 0.5. Also obtain the deflated polynomial. Using Crank-Nickolson's Scheme, solve $u_t = \frac{1}{16}u_{xx}$; 0 < x < 1, t > 0, 5 $u(x,0) = 100 \sin \pi x$, u(0,t) = 0, u(1,t) = 0. Take k=1 and compute "u" for 2 time step with 3A. h = 0.25.

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

3**B**

IANIPAL INSTITUTE OF TECHNOLOGY

The angular displacement θ of a simple pendulum is given by $\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0$ where l = 98cm and $g = 980cm/sec^2$. If $\theta = 0$ and $\frac{d\theta}{dt} = 4.427$ at t = 0, use Runge -Kutta method order 4. Find θ and $\frac{d\theta}{dt}$, when t = 0.2 sec.

4A. Solve the boundary value problem $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ with the conditions $u(0, t) = u(4, t) = 0, u(x, 0) = x(4 - x) \text{ and } \frac{\partial u}{\partial t}(x, 0) = 0, 0 \le x \le 4$, taking h = 1 and k = 0.5, for third level solution in time t. 5

4B. Explain Thomas algorithm to solve the tri-diagonal system of equations and hence solve 2x+y=0; 3x+y+z=1; 2y+z+u=0; 3z-u=2.

Solve the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, 0 < x < 1, 0 < y < 1, u(x, 1) = u(0, y) = 0$

5A. $u(1, y) = 9(y - y^2), u(x, 0) = 9(x - x^2)$ at the pivotal points. Perform two iteration by Gauss-Seidel method. Take h=1/3.

5B	From the following table, find the velocity and acceleration at $x = 2.03$								
		x	1.96	1.98	2.00	2.02	2.04		
		у	0.7825	0.7739	0.7651	0.7563	0.7473		

5