Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

FIRST SEMESTER M.TECH (MECHTRONICS) SEMESTER EXAMINATIONS

MARCH 2021

SUBJECT: MATHEMATICS FOR SIMULATION AND MODELLING [MAT -5162] REVISED CREDIT SYSTEM (05/ 03/2021)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL questions.

✤ Missing data's can be assumed suitably

1A.	Write the twelve point procedure for solving problems through Mathematical modelling.	3
1B.	Explain 15 characteristics of Mathematical Modelling.	3
1C.	Solve the system of equations by LU decomposition method 3x + 2y + 7z = 9, $x + 2y + 3z = 6$, $3x + y + 2z = 8$	4
2A.	solve the following system of equations using Gauss-Seidal method 10x - 2y - z - w = 3, -2x + 10y - z - w = 15, -x - y + 10z - 2w = 27, -x - y - 2z + 10w = -9. Carryout three iterations	3
2B.	solve the tridiagonal system of equations using Thomas Algorithm method 2x - y = 0, $-x + 2y - z = 0$, $-y + 2z - w = 0$, $-z + 2w = 1$	3
2C.	Solve the system of non-Linear equations $x^2 + xy + y^2 = 7$, $y^3 + x^3 = 9$. The initial approximation $x_0 = 1.5$, $y_0 = 0.5$, carry out three iterations.	4
3A.	Solve wave equation $u_{tt} = u_{xx}$, $0 < x < 1$, $t > 0$, $u(x, 0) = 100(x - x^2)$, $\frac{\partial u(x, 0)}{\partial t} = 0$, u(0, t) = u(1, t) = 0. Compute u for three time steps with $h = 0.25$.	3
3B.	Perform one iteration to extract a quadratic factor using Lin – Bairstow's method from the polynomial $x^4 - 5x^3 + 20x^2 - 40x + 60 = 0$. P ₀ = - 4, Q ₀ = 8	3

3C.	Solve the boundary value problem $y'' + (1 + x^2)y + 1 = 0$, $y(1) = 0 = y(-1)$, using Weighted Residual method. Take second degree interpolating polynomial in each sub intervals with three nodes.	4
4A.	Find the second order Taylor series approximation of the function $f(x_1, x_2, x_3) = x_2^2 + x_3^2 x_1^2 + x_2^2 e^{x_1 x_3}$ about the point (1,0,-2).	3
4B.	Find the extreme points of the function $f(x_1, x_2) = x_1^3 + x_2^3 + 4x_1^2 + 2x_2^2 + 8$ using Hessian matrix	3
4C.	Minimize $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ subject to $x_1 + x_2 + x_3 \ge 5$, $2 - x_2 x_3 \le 0$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 2$. Determine whether the Kuhn –Tucker conditions are satisfied at the following points. $X_1 = (1.5, 1.5, 2)$, $X_2 = (4/3, 2/3, 3)$, $X_3 = (2, 1, 2)$	4
5A.	Maximize the function $f(x_1, x_2) = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$ using Steepest ascent method. starting from the point $X_1 = (1,1)^T$, Carry out three iterations.	3
5B.	Use Dijkstra's algorithm on the connected weighted graph to find the shortest path from 'a' to 'z'	3
5C.	Write adjacency, incidence matrix for the graph shown in figure below V_1 V_2 C V_3 f V_6 d v_5 e v_4	4