

III SEMESTER M.C.A END SEMESTER EXAMINATIONS, JANUARY 2021

SUBJECT: MACHINE LEARNING
[MCA 5152]
REVISED CREDIT SYSTEM

(02/01/2021)
Time: 3 Hours

Instructions to Candidates:

❖ Answer ALL the questions.

- * Missing data may be suitable assumed.
- IA With suitable diagrams and examples, Compare and contrast between

 i. Supervised Learning vs. Reinforcement Learning

 ii. Neural Networks vs. Convolutional Neural Networks.

 iii. Parametric vs. Non Parametric Models

 iv. Bias vs. Variance

 v. Pre-pruning vs. Post pruning in Decision Trees.

 IB With respect to Regression models, explain the concepts of

 i. Auto correlation

 ii. Collinearity

 iii. Heteroscedasticity

 IC What is Inductive Bias? List any two biases that can be imposed on a machine learning model

Page 1 of 4

MAX. MARKS: 50

	Use the Naïve Bayesian					5			
	on the predictor variable	les of Refund, Ma	arital Status	and Taxab	le Income.				
	The test instance is Ref	fund='No', Marita	al Status='I	Divorced' ar	nd Taxable				
	income is 140K. Consider the following data set:								
	Tid Refund Marital Taxable								
		Status	Income	Evade					
18/9	te Ye	444.024.14	125K	No No					
	2 No 3 No		70K	No					
	4 Ye	Married	120K	No		e- (a.))			
-	5 No	Section 1981	95K 60K	Yes					
	6 No	The state of the s	and the second	No		- 4m			
T	B No	Single	85K	Yes	, , , ,,,,,,				
	9 No		75K	No					
		10 No Single 90K Yes							
	For taxable income:								
	For taxable income:								
		sample mean=11	0, sample v	ariance=29	<i>75</i> .				
	For EVADE = No: the								
	For EVADE = No: the For EVADE = Yes: the	e sample mean=90	0, sample vo	ariance=25.	P	2			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne	e sample mean=90	0, sample vo	ariance=25.	on with two	3			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is in	e sample mean=90 cural network show	o, sample vo wn below. A	An observation What is the	on with two	3			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne	e sample mean=90 cural network show	o, sample vo wn below. A	An observation What is the	on with two	3			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is in	e sample mean=90 cural network show	o, sample vo wn below. A	An observation What is the	on with two	3			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is in	e sample mean=90 foural network show input to the neural network using a s	o, sample vo wn below. A	An observation What is the	on with two	3			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is in	e sample mean=90 cural network show	o, sample vo wn below. A al network. sigmoid act	An observation What is the	on with two	3			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is in	e sample mean=90 foural network show input to the neural network using a s	o, sample vo wn below. A	An observation What is the	on with two	3			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is in	e sample mean=90 Fural network show input to the neural network using a second of the neural network	o, sample vo wn below. A al network. sigmoid act	An observation What is the	on with two	3			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is in	e sample mean=90 foural network show input to the neural network using a s	o, sample vo wn below. A al network. sigmoid act	An observation What is the	on with two	3			
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is in	e sample mean=90 Fural network show input to the neural network using a second of the neural network	o, sample vo wn below. A al network. sigmoid act	An observation What is the	on with two	3			
	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is is output from the neural	e sample mean=90 Fural network show input to the neural network using a second of the neural network network using a second of the neural network netwo	o, sample vo	An observation what is the ivation function	on with two ne predicted tion?				
В	For EVADE = No: the For EVADE = Yes: the Consider the simple ne variables (0.5,0.3) is in	e sample mean=90 foural network show input to the neuronetwork using a second of the	o, sample vo	An observation what is the ivation function	on with two ne predicted tion?				

A 0 B 8 0 C 2 6 0 D 5 4 8 0 E 10 9 1 7 0 I. Perform single-link, Agglomerative clustering on the following distance matrix. II. Represent the clustering using a Dendrogram.	3A			Item	Α	В	С	D	E			5
B 8 0 C 2 6 0 C D 5 4 8 0 E 10 9 1 7 0 I. Perform single-link, Agglomerative clustering on the following distance matrix. II. Represent the clustering using a Dendrogram. 3B What is model selection and generalization? Explain with suitable examples. 3C We have 3 data points: 3, 3.5 and 4. Assume that these values are from a Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X 1 2 4 3 5							-					
I. Perform single-link, Agglomerative clustering on the following distance matrix. II. Represent the clustering using a Dendrogram. 3B What is model selection and generalization? Explain with suitable examples. 3C We have 3 data points: 3, 3.5 and 4. Assume that these values are from a Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. B I. Calculate the residual values for each values of X from the mean using Linear Regression: X 1 2 4 3 5 Y 1 3 3 2 5 II. Draw the scatter plot for the given data set. C Suppose the amount of gasoline sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Also represent the problem statement using a 2-				В		0						
I. Perform single-link, Agglomerative clustering on the following distance matrix. II. Represent the clustering using a Dendrogram. 3B What is model selection and generalization? Explain with suitable examples. 3C We have 3 data points: 3, 3.5 and 4. Assume that these values are from a Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X				C	2	6	0					
I. Perform single-link, Agglomerative clustering on the following distance matrix. II. Represent the clustering using a Dendrogram. 3B What is model selection and generalization? Explain with suitable examples. 3C We have 3 data points: 3, 3.5 and 4. Assume that these values are from a Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X				~ D	5	4	8	0				
distance matrix. II. Represent the clustering using a Dendrogram. 3B What is model selection and generalization? Explain with suitable examples. 3C We have 3 data points: 3, 3.5 and 4. Assume that these values are from a Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X			-	Е	10	9	1	7	0			
distance matrix. II. Represent the clustering using a Dendrogram. 3B What is model selection and generalization? Explain with suitable examples. 3C We have 3 data points: 3, 3.5 and 4. Assume that these values are from a Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X		I	Perform	a single li	ale A aa	1						
II. Represent the clustering using a Dendrogram. 3B What is model selection and generalization? Explain with suitable examples. 3C We have 3 data points: 3, 3.5 and 4. Assume that these values are from a Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X					ik, Agg	giomera	inve (clusterir	ig on	the	following	
What is model selection and generalization? Explain with suitable examples. We have 3 data points: 3, 3.5 and 4. Assume that these values are from a Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. AM I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. AB I. Calculate the residual values for each values of X from the mean using Linear Regression: X 1 2 4 3 5 Y 1 3 3 2 5 II. Draw the scatter plot for the given data set. CS Suppose the amount of gasoline sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Also represent the problem statement using a 2-		II			tonin a		D .			, .,		
examples. 3C We have 3 data points: 3, 3.5 and 4. Assume that these values are from a Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X	2D		The second secon								-77	M: xx
Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X	SD			el selectio	n and	genera	alizatio	on? Ex	plain	with	suitable	3
Normal Distribution. Estimate the model parameters from Maximum Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X	2.0							y	•			
Likelihood Estimation. Assume there are 2 data instances. For instance 1, the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X	3C	We	nave 3 data	a points: 3,	3.5 and	d 4. As	sume	that the	se valu	ies a	re from a	2
the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X												
the mean and variance values are 3, 2; and for instance 2, the mean and variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X		Like	lihood Est	imation. As	ssume th	nere ar	e 2 da	ta insta	nces. F	or in	istance 1,	•
Variance values are 5, 7. 4A I. Describe the equation for Maximal Margin Hyperplane (MMH) in a Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. 4B I. Calculate the residual values for each values of X from the mean using Linear Regression: X												
Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. I. Calculate the residual values for each values of X from the mean using Linear Regression: X		varia	nce values	are 5, 7.								
Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. I. Calculate the residual values for each values of X from the mean using Linear Regression: X		No.										
Support Vector Machine. Also describe the MMH equations for a 2 class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. I. Calculate the residual values for each values of X from the mean using Linear Regression: X	4A	I.	Describe	e the equati	on for N	/axima	al Mar	gin Hyr	ernlan	e (M	MH) in a	5
class classification problem. II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. I. Calculate the residual values for each values of X from the mean using Linear Regression: X												3
II. What are the two essential elements involved in the design of systems that integrate multiple classifiers? Give a real time example for each. I. Calculate the residual values for each values of X from the mean using Linear Regression: X							001100	the ivily	nii cqu	iaii0.	115 101 a 2	
systems that integrate multiple classifiers? Give a real time example for each. I. Calculate the residual values for each values of X from the mean using Linear Regression: X		II.					nents	involve	od in 6	1	1	
for each. I. Calculate the residual values for each values of X from the mean using Linear Regression: X												
I. Calculate the residual values for each values of X from the mean using Linear Regression: X												
using Linear Regression: X	1R	Ţ										
X 1 2 4 3 5 Y 1 3 3 2 5 II. Draw the scatter plot for the given data set. C Suppose the amount of gasoline sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Also represent the problem statement using a 2-	TD	1.				es for	each v	values o	of X fr	om t	the mean	3
II. Draw the scatter plot for the given data set. Suppose the amount of gasoline sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Also represent the problem statement using a 2-												
II. Draw the scatter plot for the given data set. Suppose the amount of gasoline sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Also represent the problem statement using a 2-				1	2	4		3	5			
Suppose the amount of gasoline sold daily at a service station is uniformly distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Also represent the problem statement using a 2-			Y	1	3	3		2	5			
distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Also represent the problem statement using a 2-		II.	Draw the	scatter plo	ot for the	given	data s	et.				
distributed with a minimum of 2,000 gallons and a maximum of 5,000 gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Also represent the problem statement using a 2-	C	Suppo	se the am	ount of gas	oline so	ld dail:	y at a	service	station	is u	niformly	2
gallons. What is the probability that daily sales will fall between 2,500 gallons and 3,000 gallons? Also represent the problem statement using a 2-		distributed with a minimum of 2,000 gallons and a maximum of 5,000								of 5.000		
gallons and 3,000 gallons? Also represent the problem statement using a 2-												
TAMANAN TO THE TAME TO THE TAM						. Cooiit	are pr	obtem s	siaiciile	iii u	sing a 2-	

5A	I. Write a Linear Cost Functio	n for each of	the following	ng statements. Us	e 5			
JA	Y for estimated costs and X							
	(iii) Utilities will have a minimum charge of \$900, plus a charge of \$0.08 per kilowatt hour.							
	1							
	(iv) Machine operating costs include \$220,000 of machine depreciation per year, plus \$75 of utility costs for each day of the							
	machinery is in operation.							
	II. Write the pseudocode for cost function in Gradient Descent							
	algorithm.	T - 1 - C41	alogges ho	vo the semple size	es 3			
5B	We have 2 classes: C1 and C2. Each of these classes have the sample sizes							
	of m, n respectively. The following data is given for each of the samples:							
	μx	μ _y	σx	<u>Gy</u>				
	Class C1 -0.12	+0.67	4.23	0.78				
	Class C2 +0.57	-0.32	3.54	1.23				
	Assuming the samples of each class follow a Normal Distribution,							
	Determine the class to which the tuple (2.5, 3.5) belongs to using the method							
	of Maximum Likelihood Estimation.							
5C	Suppose the time required to build a computer is normally distributed with							
50	a mean of 50 minutes and a standard deviation of 10 minutes. What is the							
	probability for the assembly time of a computer to be between 45 and 60							
	minutes?							
A. S.	ininutes!							

MCA 5152 Page 4 of 4