Reg. No.									
----------	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

V SEM B.Tech (BME) DEGREE END-SEMESTER EXAMINATIONS, DEC/JAN 2020-21.

SUBJECT: DIGITAL SIGNAL PROCESSING (BME 3153) (REVISED CREDIT SYSTEM) Monday, 4th January 2021, 2 to 5 PM

Instructions to Candidates:

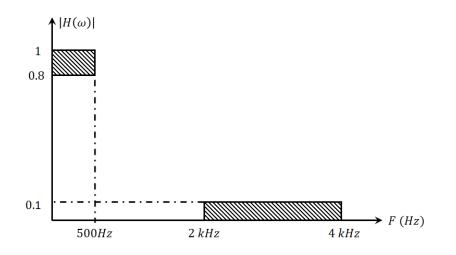
TIME: 3 HOURS

MAX. MARKS: 50

Answer ALL questions. Draw labeled diagram wherever necessary

- 1. a) Explain each operation performed on the sequences $x(n) = \begin{cases} n & -3 \le n \le 3 \\ 0 & otherwise \end{cases}$ to represent the (5) resultant sequence y(n) = x(-2n+1)
 - b) Let $x_{ev}(n)$ and $x_{od}(n)$ be even and odd real sequences, respectively. Examine the symmetry of (3) $g(n) = x_{ev}(n)x_{od}^2(n)$
 - c) Consider the Discrete-time sequence $x(n) = |\alpha|^n$. Justify whether the given sequence is (2) bounded or unbounded.
- 2. a) Adapt the circular convolution of two 4-point finite length sequence $x(n) = \{1, 0, 0, 0\}$ and (5) $y(n) = \{2, 1, 1, 2\}$ to determine linear convolution of the given sequences.
 - b) Consider the continuous time sinusoidal signal $x(t) = \cos(90\pi t) 0.2\cos(290\pi t)$. If x(t) is discretized with a sampling rate of 300 samples/sec to yield discrete-time sequence x(n), then examine whether x(t) is reconstructed from x(n). (3)
 - c) Justify whether the fundamental period of the following discrete-time sequences $x(n) = (2) e^{j\sqrt{8}\pi n}$ is determined.
- 3. a) Evaluate the inverse z-transform for all possible ROCs for the given z-transforms X(z) = (5) $\frac{3z}{z^2+0.3z-0.18}$ and examine the existence of the Discrete-time Fourier transform on the resultant sequence(s).
 - b) Consider the IIR High pass filter defined by the system function $H(z) = \frac{1+\alpha}{2} \frac{1-z^{-1}}{1-\alpha z^{-1}}$. Design the (3) filter for the $\frac{3\pi}{4}$ radians/sample cut off frequency.
 - c) Design the Doubly complementary filter for the given filter with the system function $H(z) = \frac{1}{2}(1-z^{-1})$. (2)

- 4. a) Consider the M-point Moving Average System characterized by its difference equation y(n) = (5) $\frac{1}{M} \sum_{k=0}^{M-1} x(n-k)$. Determine the Frequency Response $H(e^{j\omega})$ of this system. Plot the Magnitude and phase spectrum of the Frequency Response $H(e^{j\omega})$ for M=5-point Moving Average System.
 - b) Design the Type-2 linear-phase FIR filter with the following zeros: $z_1 = 3.1$, $z_2 = -2 + j4$. (3)
 - c) Consider the FIR Low pass filter defined by the system function $H(z) = \frac{1}{2}(1 + z^{-1})$. Determine (2) the characteristics of the system from its magnitude and phase spectrum.
- 5. a) The IIR digital Low Pass filter specifications are as shown in the Figure below. (5)



Design the Analog Butterworth Low Pass Filter.

- b) Design the Digital IIR Low Pass Filter from Q5(a) using Bilinear Transformation method. (3)
- c) Plot the Magnitude spectrum of the Digital IIR Low Pass Filter designed in Q5(b). (2)