

V SEMESTER B.TECH. EXTERNAL EXAMINATIONS DEC/JAN 2021 SUBJECT: BIOPROCESS ENGINEERING [BIO 3152]

Date of Exam: 30/01/2021 Time of Exam: 2.00 PM – 5.00 PM Max. Marks: 50

Instructions to Candidates:

Answer ALL the questions & missing data may be suitable assumed

1A.	In the mashing step in beer and whisky brewing, ground partially sprouted barley grain is suspended in liquid (called a wort) to allow the enzyme amylase to break down starch contained in the grain into sugars. The mashing step is carried out at warm temperature to speed up the sugar conversion process, but the enzyme also deactivates at high temperature. As a bioprocess engineer operating this brewing process, you are asked to find an optimal temperature and time. How will you model this process? What are the parameters in your model? What do you vary and what do you measure experimentally to estimate these parameters?										
1B.	Aspirin inhibits glutamate dehydrogenase. Following Data have been obtained for the enzyme catalysed and inhibition reaction. Determine the kinetic constants, type of inhibition and K _I :Product (mmoles/min)4.586.407.728.729.50Substrate (mmoles)357911Asprin (mmoles/min)I = 5 mmoles3.665.126.186.987.60										
1C.	For a given enzyme catalyzed reaction, the Michaelis constant is 0.5 mM and the substrate concentration is 6.0 mM. What is the fractional saturation of the enzyme under these conditions?										
2A.	Consider the sterilization of a sodium gluconate production medium in the holding section of a continuous sterilizer. Assuming constant temperature, the specific death rate constant of the contaminant is 20 s ⁻¹ . If the average residence time in the holding section is 10 seconds, calculate the Del factor for the following and explain the results. i. For Pe = 400 ii. For Pe = 400, assuming plug flow iii. For Pe = 100 iv. For Pe = 100, assuming plug flow										
2B.	If a pilot sterilization were carried out in 10 ⁷ dm ³ vessel with a medium containing 10 ¹⁴ organisms per cm ³ requiring a probability of contamination of 1 in 1000, What would be the Nabla factor?										
2C.	A continuous sterilizer is constructed using a 21 m length of pipe of internal diameter 8 cm. Liquid medium in the pipe is maintained at 128°C using saturated steam. At this temperature, the specific death constant of the contaminating organisms is 340 h^{-1} and the density and viscosity of the medium are 1000 kg/m ³ and 0.9 cP respectively. The										

	concentration of contaminants in the raw medium is $6.5 \times 10^5 \text{ mL}^{-1}$. If sterile medium is required on the fermentation floor at a rate of 0.9 m ³ /h, what is the frequency of contamination in the fermentation factory?													
3A.	A bacterium having doubling time of 10 min fills a cylindrical vessel completely in 3 hours. How much time will it take to fill half of the vessel?													
	An experiment was performed to determine the effect of fetal calf serum on the growth rate of cells of a hybridoma cell line (HBD1). The following results were obtained. In which medium do the cells grow fastest? Show working to support your answer.													
	Time, h	0	30	60	90	0	12	0 1	80	210				
	O.D @ Medium A	0.05	0.05	0.06	0.0	8	0.1	1 0	.4	0.76				
3B.	O.D @ Medium B	0.05	0.05	0.05	0.0)7	0.	1 0.	21	0.29		3		
	Time, h	· · · · · · · · · · · · · · · · · · ·	24	40 2	70	300		330 3		C				
	O.D @ 1	0	.9 0.	0.99 1)5	1.15	1.2						
	O.D @ 1	/ledium B	0.	38 0.	52 0.8		8	1.0	1.05					
The growth of a microbial population is a function of pH and is given by the follo equation:										llowing				
3C. $\mu_{g} = \frac{1}{X} \frac{dX}{dt} = \frac{\left(\frac{\mu_{m}}{\left\{ 1 + \frac{H^{+}}{k_{1}} \right\}} \right)^{S}}{\left(\frac{K_{s}}{\left\{ 1 + \frac{H^{+}}{k_{1}} \right\}} \right) + S}$											5			
	 i. With a given set of experimental data (X and S versus t), describe how you would determine the constants μ_m, K_s, and k₁. ii. How would the double reciprocal plot 1/μ_g vs 1/S change with pH (H⁺) concentration? 													

4A.	The a restar Use th to esti C, m	ir supp ted. A v ne tabula mate th a, min g/L g/L	ly to 'alue ated r ie oxy -1 4.5 7 0	the f of C* neas /gen 8 8 1.2	ermente of 7.3 r uremen uptake r 0 4.5 9 20	er was ng/L h ts of di rate an 1 3.9 10 2.5	turned as beel ssolved d the k 2.2 2.2 11 2.8	d off n det d oxy La in Air o 9 Air o 12 3.4	for a cermin rgen (the soff 3 2.3 on 1 . 4	a sho ped (pDO) syste	ort p for th valu em. 4 1.8 1.8 14 4.2	eriod ne op les in 	l of tip peratin the fo 5 1.3 5 1.25	me a lg col bllowi 6 0.9	ind the nditio ing ta	hen ns. ble	4
	For th	e follow ime, s	ring d	ata d 0	etermin 40	e the k 80	ausin 120	g ga:	ssing	out 200	metl	hod. 40	280	3	20		
	3 D	O (%), LPM O (%),	at at	0	38	55.8	72.4	81 78	.3 8	84.7	8	5.5 4.1	87.8	8	8.2 8.9		
4B.	Tim			Tim	e, s	, s 360		4	440		480 520]				4
				DO (%), at 3 LPM		89.7	94.4	94.4 91.3 90		90.4	90.4 91.3						
				do 4 LF	(%), at PM	89.9	89.9	90	J.1	90.	1 5	91.1					
4C.	A 5,000 liter (of liquid) bioreactor contains 10 g/L of growing cells, $q_{O2} = 40$ mmoles $O_2 / (g \text{ cells hr})$, $D_T = 2 \text{ m}$, $D_I = 1 \text{ m}$, (6 – blade turbine agitator) x 3 blades and $C_L = 2 \text{ mg} O_2/L$. Calculate OUR.											2					
	Consi cataly	der a l st withir	ong p n the	porou pore:	is catal s, the co	yst cyl oncentr	linder, ation g	beca radie	iuse ent of	of a read	a par ctant	rticula A is	ar arr $C_A =$	ange C _{AS} ($\frac{ment}{r^2}$	of	
5A.	What is the total amount of A reacting in any 1-cm length of the cylinder if the radius is 4 cm, the effective diffusivity is 10^{-3} cm ² /s, and the concentration at the external surface (C _{AS}) is 0.002 mol/cm ³ .												4				
	Lactic acid is degraded by Lactase enzyme immobilized in a porous sodium-alginate beads. Experiments conducted with different bead sizes result in the following rate data.																
5B	Bead dia, D_p mm 1 2 3 4 5 7 10									4							
	ii. Th As	E follow suming	v (mỹ ing da no lic	g/∟.h) ata we quid fi	ere obta	ined fo	or $D_p = 4$ determ	4 mm	$\frac{200}{1000}$ at di	ffere	50 ent si d K₅ f	ubstra or the	ate co e micr	ncen obial	tratio syste	ns. em.	
	Rate, V (mg/L.h) 85 200 360 630 1000																

	In one region of an unsaturated solution of sucrose, the molar concentration gradient is	
5C.	-0.10 mol/L/cm. What quantity of sucrose molecules pass through an area of 1 cm ² in	2
	10 minutes? (Diffusion coefficient = $0.522 \times 10^{-9} \text{ m}^2/\text{s}$)	