V SEMESTER B.TECH. END SEMESTER EXAMINATIONS JAN-FEB 2021

SUBJECT: CHEMICAL REACTION ENGINEERING [CHE 3151]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.
- ✤ Use graphs wherever relevant.

IA.A rocket engine burns a stoichiometric mixture of fuel (liquid hydrogen) in oxidant (liquid oxygen). The combustion chamber is a cylinder of length 0.75 m and diameter 0.60 m. The combustion reaction $H_2 + \frac{1}{2} \ O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s 1B. The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?O 1C. Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ O 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.O	A rocket engine burns a stoichiometric mixture of fuel (liquid hydrogen) in oxidant (liquid oxygen). The combustion chamber is a cylinder of length 0.75 m and diameter 0.60 m. The combustion reaction041A. $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s041B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.05	A rocket engine burns a stoichiometric mixture of fuel (liquid hydrogen) in oxidant (liquid oxygen). The combustion chamber is a cylinder of length 0.75 m and diameter 0.60 m. The combustion reaction04 1A. $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s04 1B. The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?03 1C. Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 03 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.05 2B. () Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at $2410^{\circ} R = 5 \text{ thm} (C_{\circ} = 0.00 \text{ CP mol}/h)$ 2+3	A ro oxyg com 1A. H ₂ - proc of i) The	bocket engine burns a stoichiometric mixture of fuel (liquid hydrogen) in oxidant (liquid gen). The combustion chamber is a cylinder of length 0.75 m and diameter 0.60 m. The abustion reaction $+\frac{1}{2} O_2 \rightarrow H_2 O$ duces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction hydrogen and ii) oxygen in mol/m ³ . s	04								
IA.oxygen). The combustion chamber is a cylinder of length 0.75 m and diameter 0.60 m. The combustion reaction $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . sIB.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?O1C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ O2A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.O	IA.oxygen). The combustion chamber is a cylinder of length 0.75 m and diameter 0.60 m. The combustion reaction041A. $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s041B.The maximum allowable temperature for a reactor is 800 K. At present our operating set 	1A.oxygen). The combustion chamber is a cylinder of length 0.75 m and diameter 0.60 m. The combustion reaction $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s041B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052B.A homogenous gas phase reactor to achieve 80% conversion of a 50% A-50% inert feed at 2430 243	۰ میر 1A. <i>H</i> 2 - proc of i) The	gen). The combustion chamber is a cylinder of length 0.75 m and diameter 0.60 m. The abustion reaction $+\frac{1}{2} O_2 \rightarrow H_2 O$ duces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction hydrogen and ii) oxygen in mol/m ³ . s	04								
1A.combustion reaction $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s61B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?01C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 02A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.0	1A.combustion reaction $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s041B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.03	1A.combustion reaction $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s041B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052B.A homogenous gas phase reaction $A \rightarrow 3R$ has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at 24^{2} 243	1A. H ₂ - proc of i) The	The abustion reaction $+\frac{1}{2} O_2 \rightarrow H_2 O$ duces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction hydrogen and ii) oxygen in mol/m ³ . s	04								
1A. $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s1B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?Output1C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ Output2A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.Output	1A. $H_2 + \frac{1}{2} 0_2 \rightarrow H_2 0$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s041B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.04	1A. $H_2 + \frac{1}{2} 0_2 \rightarrow H_2 0$ produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s041B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052B.A homogenous gas phase reactor to achieve 80% conversion of a 50% A-50% inert feed at 243 243	1A. H ₂ - proc of i) The	$+\frac{1}{2} O_2 \rightarrow H_2 O$ duces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction hydrogen and ii) oxygen in mol/m ³ . s	04								
produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s 1B. The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?Output 1C. Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ Output 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.Output	produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s031B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.05	produces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction of i) hydrogen and ii) oxygen in mol/m ³ . s031B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052B.A homogenous gas phase reaction $A -> 3R$ has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at 2430 $C = 0.0000000000000000000000000000000000$	proc of i) The	duces 108 kg/s of exhaust gases. If the combustion is complete, find the rate of reaction hydrogen and ii) oxygen in mol/m ³ . s									
of i) hydrogen and ii) oxygen in mol/m³. s 1B. The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol? 1C. Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 02A. Deduce the performance equation from basic principles for an ideal batch reactor for a 	of i) hydrogen and ii) oxygen in mol/m ³ . sOf 1B. The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?O3 1C. Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ O3 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.O5	of i) hydrogen and ii) oxygen in mol/m³. sImage: constraint of the maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?O316.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ O32A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C.O52B.O1 (Conse the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at 2450 °C.2450 °C.	of i) The	hydrogen and ii) oxygen in mol/m ³ . s									
1B. The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?Output 	1B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.03	1B.The maximum allowable temperature for a reactor is 800 K. At present our operating set point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052B.A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at $2+3$ 2+3	The	of i) hydrogen and ii) oxygen in mol/m ³ . s									
1B.point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?01C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 02A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.0	1B.point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.03	1B.point is 780 K. Now, with a more sophisticated control system we would be able to raise our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?031C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052B.A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at $245\% C 8.5$ strue C = 0.0025 mal/l2+3		The maximum allowable temperature for a reactor is 800 K. At present our operating set									
IB.our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?IC.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 0IC.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.0	IB.our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?OSIC.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ O3IC.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.O5	15.our set point to 792 K. By how much can the reaction rate be raised by this change if the reaction has an activation energy of 175 KJ/mol?0316.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052B.A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at $24r^{2}$ 2+3	poir	nt is 780 K. Now, with a more sophisticated control system we would be able to raise	02								
reaction has an activation energy of 175 KJ/mol?Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 0 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.0	reaction has an activation energy of 175 KJ/mol?Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 03 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.05	reaction has an activation energy of 175 KJ/mol?Oeduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ O32A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.O52B.A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at 24-32+3	our	set point to 792 K. By how much can the reaction rate be raised by this change if the	05								
1C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 02A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.0	1C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.03	1C.Deduce a mechanism that is consistent with the experimentally found rate equation for the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052B.A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at $215^{\circ}C = 0.0235$ mal/l2+3	read	ction has an activation energy of 175 KJ/mol?									
1C.the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 02A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.0	1C.the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.03	1C.the following reaction $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ 032A.Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052B.A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at $2+3$ 2+3	Ded	luce a mechanism that is consistent with the experimentally found rate equation for									
IC. $2A + B \rightarrow A_2 B$ $+r_{A_2B} = k[A][B]$ IC. 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.IC.	IC. $2A + B \rightarrow A_2 B$ $+r_{A_2B} = k[A][B]$ OS 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.OS	IC. $2A + B \rightarrow A_2B$ $+r_{A_2B} = k[A][B]$ OS 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.O5 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.O5 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.O5 2B. A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. 2432B. $215^{\circ}C_{\circ}R_{\circ}$ 5 atm: $C_{\circ} = 0.0625$ mol/l 243	the	following reaction	02								
$+r_{A_2B} = k[A][B]$ 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change. 09	$+r_{A_2B} = k[A][B]$ 2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change. A homogeneous gas phase reaction $A > 3B$ has a rate, $r_1 = 0.01 \text{ C} \frac{1/2}{2}$ mol/l set at 315 %	$+r_{A_2B} = k[A][B]$ Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change.052A.A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C.052B.i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at $245\% C_B C_B$ struct $C_B = 0.0225$ mol/l2+3	2 <i>A</i> ·	$+ B \rightarrow A_2 B$	03								
2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change. 0	2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change. 05A homogeneous gas phase reaction $A > 3P$ has a rate, $r_1 = 0.01 \text{ GeV}^2$ mol/l set at 315 9 C	2A. Deduce the performance equation from basic principles for an ideal batch reactor for a gas phase reaction with significant density change. 05 A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. 05 2B. 1) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at 2+3 2+3	$+r_A$	$k_{2B} = k[A][B]$									
gas phase reaction with significant density change.	gas phase reaction with significant density change. A homogeneous gas phase reaction $A > 3P$ has a rate, $r_1 = 0.01 \text{ C} \frac{1/2}{2} \text{ mol}/1 \text{ set at } 315 ^{9}\text{C}$	2A.gas phase reaction with significant density change.05A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C.05i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at2+3	Ded	luce the performance equation from basic principles for an ideal batch reactor for a	05								
	A homogeneous gas phase reaction $A > 3P$ has a rate, $r_{\rm c} = 0.01 \text{ G} \frac{1/2}{2} \text{ mol}/1 \text{ sec at } 315 ^9\text{C}$	2B. A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at 2+3	gas	phase reaction with significant density change.	05								
A homogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C.	A nonogenous gas phase reaction A-> SK has a rate -r _A - 0.01 C _A / mol/1 set at 215 °C.	2B. i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at 2+3	A ho	omogenous gas phase reaction A-> 3R has a rate $-r_A = 0.01 C_A^{1/2}$ mol/l sec at 215 °C.									
i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at	i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at	2D. 215^{0}	i) Ch	i) Choose the best flow reactor to achieve 80% conversion of a 50% A-50% inert feed at									
215°C & 5 atm; C_{A0} = 0.0625 mol/l.	2B / 2+2	215° C & 5 atm; CA0= 0.0625 m01/1.	20.	215 ^o C & 5 atm; C _{A0} = 0.0625 mol/l.									
ii) Find the space time peeded	2B. 215° C & 5 atm; C _{A0} = 0.0625 mol/l. 2+3		ii) F										
ii) Find the space time needed.	2B. 215°C & 5 atm; C _{A0} = 0.0625 mol/l. 2+3 ii) Find the space time needed. 2	II) Find the space time needed.	i) V	What is the purpose of using recycle stream in a PFR?									
i) What is the purpose of using recycle stream in a PFR?	2B. 215°C & 5 atm; C _{A0} = 0.0625 mol/l. 2+3 ii) Find the space time needed. i) What is the purpose of using recycle stream in a PFR?	i) Find the space time needed. i) What is the purpose of using recycle stream in a PFR?	ii) C	Choose among PFR, CSTR and PFR with recycle to perform an autocatalytic reaction.	2.2.2								
 i) What is the purpose of using recycle stream in a PFR? ii) Choose among PFR, CSTR and PFR with recycle to perform an autocatalytic reaction. 	 2B. 215°C & 5 atm; C_{A0}= 0.0625 mol/l. ii) Find the space time needed. i) What is the purpose of using recycle stream in a PFR? ii) Choose among PFR, CSTR and PFR with recycle to perform an autocatalytic reaction. 	 i) Find the space time needed. i) What is the purpose of using recycle stream in a PFR? ii) Choose among PFR, CSTR and PFR with recycle to perform an autocatalytic reaction. 	20	Justify your choice.									
 ii) What is the purpose of using recycle stream in a PFR? ii) Choose among PFR, CSTR and PFR with recycle to perform an autocatalytic reaction. Justify your choice. 	2B. 215°C & 5 atm; C _{A0} = 0.0625 mol/l. 2+3 ii) Find the space time needed. ii) What is the purpose of using recycle stream in a PFR? ii) Choose among PFR, CSTR and PFR with recycle to perform an autocatalytic reaction. 2+3+4 Justify your choice. 2+3	ii) Find the space time needed. i) What is the purpose of using recycle stream in a PFR? ii) Choose among PFR, CSTR and PFR with recycle to perform an autocatalytic reaction. Justify your choice.	ЗА. Ј	ustify your choice.									
2B. 215° C & 5 atm: C ₄₀ = 0.0625 mol/l.		215° U & 5 atm: 140 = 1.00 / 1.00	2B. 21	215°C & 5 atm; C _{A0} = 0.0625 mol/l.									
ii) Find the space time needed	2B. 215° C & 5 atm; C _{A0} = 0.0625 mol/l. 2+3		ii) F										
ii) Find the space time needed.	2B. 215°C & 5 atm; C _{A0} = 0.0625 mol/l. 2+3 ii) Find the space time needed. 2+3	II) Find the space time needed.	i) V	What is the purpose of using recycle stream in a PFR?									

3B.	Define D	amköh	ler nu	mber.	Explai	n its re	levance	e to rea	actors i	n series.				03
	Substand	ce A in a	a liqui	d phas	e reac	tion pr	oduces	R and	S as fo	llows:				
4A.	Both are	first or	der re	eaction	s with	rate co	onstant	s k₁ an	d k2. A	feed (Ca	₀ = 1, C ₁	$R_0 = 0, C_s$	₀ = 0)	4+3
	enters two mixed flow reactors in series, (τ_1 = 2.5 min, τ_2 = 5 min). Knowing composition in the first reactor (C_{A1} = 0.4, C_{R1} = 0.4, C_{S1} = 0.2)											g the		
	i) Find t	ne rate	const	ants.	-									
	ii) Find t	he com	positi	ion (C _{A2}	2, C _{R2} ,	C _{s2}) lea	aving th	ie seco	nd read	ctor.				
4B.	Starting competi A + B - R + B - sketch th	with stive-conductive R_{desi} R_{desi} R_{unw} R_{unw} R_{unw}	separa nsecu [.] red ; 1 anted ; conta	tive reactive reactive $r_{1=} k_1 $ $r_2 = k_1$	eds of action $C_A C_B$ $k_2 C_R$ attern	react s with s C_B^2 ns for b	ant A stoichic	and B ometry ntinuou	and rat	ven con te as shc batch op	centration	tion, for	the	03
5A.	Discuss t	he vari	ous n	on idea	l flow	patter	ns whi	ch exist	t in pro	cess equ	ipment	t.		3
5B.	Derive a bypass a	n expre nd dea	ession d spac	for con ce. (Eva	versio Iluatio	on for a on of m	first or odel pa	rder rea aramet	action, ers not	in a real require	CSTR m d).	nodeled	using	4
5C.	A sampl concentr calculate t(min) C(t) g/m ³	e of a ration y ed. 1	trace was n 2 5	r at 32 neasure 3 8	0 K v ed as 4 10	vas inje a func 5 8	ected a ction o 6 6	as a pu f time 7 4	llse to given 8 3	a reacto in the t 9 2.2	or, and able. A 10 1.5	the eff lso, E(t) 12 0.6	luent was	3
	E(t) min ⁻¹ Find the	0.02 mean i	0.1 reside	0.16 nce tim	0.2 ne?	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0	