Reg. No.						

V SEMESTER B.TECH (CIVIL) END SEMESTER EXAMINATIONS JANUARY 2021

SUBJECT: ANALYSIS OF INDETERMINATE STRUCTURES [CIE 3151]

Date of Exam:

Time of Exam:

Max. Marks: 50

Instructions to Candidates:

❖ Answer ALL the questions & missing data may be suitably assumed

	 	-	 	\neg
Reg. No.				

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL

(A constituent unit of MAHE, Manipal)

Reg. No.				
		1 1	,	

MANIPAL INSTITUTE OF TECHNOLOGY

INIAINIPAL (A constituent unit of MAHE, Manipal)

Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

	<u>- (2017) : </u>	
	Derive the stiffness matrix for a cantilever beam AB with one rotation at 'B' as shown in the figure using first principle.	
4B	A B	3
	A 1 m long circular bar of diameter 25 mm subjected to an axial load of 200 kN cause linear expansion of 0.01 mm as shown in the figure. If a bar has Young's modulus of 210 GPa, determine the stiffness and flexibility of the axial bar element.	
4C	25 mm diameter	2
	Develop the displacement transformation matrix and system force matrix for a	
	continuous beam ABC beam shown in the figure using stiffness matrix method.	
5A.	60 kN 10 kN/m	5
	A B B C C A A A A A A A A A A A A A A A	
	Determine support reactions for a fixed beam shown in the figure using consistent deformation method if support B settles down by 8mm. Take EI = 24 X 10 ³ kNm ²	
5B.	2 m 3 m	3
5C.	A single rolling load of 100 kN moves on a simply supported girder of span 20 m. Construct influence line diagram for shear force and bending moment diagrams at a section 5 m from the left support.	2
		- 1