Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

V SEMESTER B. TECH (INDUSTRIAL & PRODUCTION ENGG.) END SEMESTER ONLINE EXAMINATIONS, JANUARY-FEBRUARY 2021

SUBJECT: SIMULATION MODELING & ANALYSIS [MME 3157]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- 1A. A supermarket has one checkout counter. Customers arrive at the checkout counter at (05) random from 1 to 10 minutes apart. Each possible value of inter-arrival time has the same probability of occurrence equal to 1/10. Service time vary from 1 to 5 minutes with probabilities shown below:

Service time	1	2	3	4	5
Probability	0.18	0.28	0.25	0.18	0.11

Develop the simulation table for 10 customers. Find:

i. What is the expected time between arrivals for 10 customers?

ii. What is the expected service time for 10 customers?

iii.What is the average time customer spending in the system?

Random numbers for inter-arrival time of customers:

35, 09, 55, 72, 43, 51, 97, 29, 08, 11

Random numbers for service time:

62, 11, 97, 38, 67, 52, 84, 63, 91, 18

- **1B.** Sketch and explain the process of model building in a simulation experiment. (03)
- 1C. Company manufacturing mobile phones establishes a fact that there is a relationship (02) between sale of mobile phones and population of the city. The market research carried out reveals the following information in table. Fit a regression equation and estimate the demand for mobile phones for 2021 if the likely population is 40 million.

Year	2016	2017	2018	2019	2020
Population (in millions)	15	22	27	36	33
No. of mobiles sold.	65	80	96	130	100
(in thousands)					

- 2A. A computer repair person is "beeped" each time there is a call for service. The (05) number of beeps per hour is known to occur in accordance with a discrete distribution with a mean of $\alpha = 6$ per hour. Compute:
 - i) The probability of no beeps in the next one hour?
 - ii)The probability of 5 beeps in the next hour?
 - iii) The probability of four or more beeps in a 1-hour period.

- **2B.** Considering the recruitment process as a discrete event system, list various (03) components of the this system.
- **2C.** What is the significance of face validity in the development of a simulation model. (02)
- **3A.** Simulation results for the five alternative scheduling procedures of a flexible (05) manufacturing system are given below. Perform ANOVA test and check, if there is any difference in production rates.

~ 1			
Procedure	Mean Production	Standard	Frequency
	rate	Deviation	
1	28.06	3.93	15
2	29.64	4.34	15
3	25.99	2.58	15
4	34.83	4.38	15
5	27.56	3,56	15

3B. A large collection of tires has 20% defective tires. Suppose one chooses tires from (03) this collection until he/she obtains six non-defective tires. Determine

a) the probability that 10th tire selected from the collection represents the sixth nondefective tire.

b) the probability that 15th tire selected from the collection represents the sixth nondefective tire.

- **3C.** A burger franchise planning a new outlet in Manipal. They estimate that minimum (02) weekly sales are Rs.10000 and maximum is Rs. 60000. They also estimate that the most likely outcome is around Rs.30000. Determine the probability of the new outlet having weekly sales of less than Rs.20000.
- **4A.** A college professor of electrical engineering is leaving home for the summer, but (05) would like to have a light burning at all times to discourage burglars. The professor rigs up a device that will hold four light bulbs. The device will switch the current to the second bulb if the first bulb fails. and if second also fails, then current will be switched to third bulb and so on. The box in which the light bulbs are packaged says, "Average life is 1335 hours, exponentially distributed." Find:
 - a) If the professor has gone for 75 days (1800 hours). What is the probability that a light will be burning when the professor returns?
 - b) If the professor has gone for 105 days (2520 hours). What is the probability that a light will be burning when the professor returns?
 - c) Calculate the mode for above cases a), b)
- **4B.** Generate a sequence of 06 random numbers using linear congruential method with (03) Seed=53, constant multiplier =21, increment=31 and modulus=100.
- **4C.** How to select input models for the simulation of a discrete event system in the (02) absence of data? Explain.

5A. The number of vehicles arriving at the northwest corner of an intersection in a 5- (05) minute period between 5:30 P.M. and 5:35 P.M. was monitored for five workdays over a 20-week period. Table 1 shows the resulting data. The first entry in the table indicates that there were 8 five-minute periods during which five vehicles arrived, 10 periods during which nine vehicle arrived, and so on. The distribution appeared to follow a Poisson distribution with mean of 5. Use chi-square test to verify the hypothesis. Take a level of significance of 0.05.

	, 					
Arrivals per Period	0	1	2	3	4	5
Frequency	13	7	18	19	11	8
Arrivals per Period	6	7	8	9	10	11
Frequency	3	9	5	4	1	2

-	•	~-	~	•	~
	7	Гаł	olo	e	1

- **5B.** How to eliminate initial bias in simulation experiments. Explain.
- **5C.** The pilot simulation experiment of a production system is run for 30 days and the (02) production rate has been observed to be 5000 units a day with a standard deviation of 500 units. What should be the length of simulation run, so that the output rate obtained is within ± 10 of the mean at

i. 98% confidence level

ii. 99% confidence level

(03)

STATISTICAL TABLES

Table 1: Standard Normal Distribution Ta	ıb	1	e
--	----	---	---

Ζ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999							

wi	th d de	grees	of freed	dom				
	Probab	oility of	exceedin	g the c	ritical va	lue		
d	0.05	0.01	0.001	d	0.05	0.01	0.001	
1	3.841	6.635	10.828	11	19.675	24.725	31.264	
2	5.991	9.210	13.816	12	21.026	26.217	32.910	
3	7.815	11.345	16.266	13	22.362	27.688	34.528	
4	9.488	13.277	18.467	14	23.685	29.141	36.123	
5	11.070	15.086	20.515	15	24.996	30.578	37.697	
6	12.592	16.812	22.458	16	26.296	32.000	39.252	
7	14.067	18.475	24.322	17	27.587	33.409	40.790	
8	15.507	20.090	26.125	18	28.869	34.805	42.312	
9	16.919	21.666	27.877	19	30.144	36.191	43.820	
10	18.307	23.209	29.588	20	31.410	37.566	45.315	

Critical values of the Chi-square distribution

Table 2: Chi-Square Distribution Table

<u>Table</u>	Critical valu	es of the Ko	olmogorov-	Smirnov Te	st Statistic
SAMPLE	LEVEL OF S	IGNIFICANCE	FOR D = M	AXIMUM [Fo()	() - S _n (X)]
(N)	.20	.15	.10	.05	.01
1 1	.900	.925	.950	.975	.995
2	.684	.726	.776	.842	.929
3	.565	.597	.642	.708	.828
4	.494	.525	.564	.624	.733
5	.446	.474	.510	.565	.669
6	.410	.436	.470	.521	.618
7	.381	.405	.438	.486	.577
8	.358	.381	.411	.457	.543
9	.339	.360	.388	.432	.514
10	.322	.342	.368	.410	.490
11	.307	.326	.352	.391	.468
12	.295	.313	.338	.375	.450
13	.284	.302	.325	.361	.433
14	.274	.292	.314	.349	.418
15	.266	.283	.304	.338	.404
16	.258	.274	.295	.328	.392
17	.250	.266	.286	.318	.381
18	.244	.259	.278	.309	.371
19	.237	.252	.272	.301	.363
20	.231	.246	.264	.294	.356
25	.210	.220	.240	.270	.320
30	.190	.200	.220	.240	.290
35	.180	.190	.210	.230	.270
OVER 35	1.07				1.63
	V N	√ N	√ N	V N	√ N

Table 3: Kolmogorov-Smirnov Test Table

Table 4: F-Distribution Table (5% Significance Level) F Distribution: Critical Values of F (5% significance level)

v_1	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
¥2										212-22					
1	101.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.36	246.46	247.32	248.01
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.42	19.43	19.44	19.45
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.71	8.69	8.67	8.66
4	7,71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.87	5.84	5.82	5.80
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.64	4.60	4.58	4.56
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.96	3.92	3.90	3.87
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.53	3.49	3.47	3.44
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.24	3.20	3.17	3.15
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.03	2.99	2.96	2.94
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.86	2.83	2.80	2.77
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.74	2.70	2.67	2.65
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.64	2.60	2.57	2.54
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.55	2.51	2.48	2.46
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.48	2.44	2.41	2.39
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.42	2.38	2.35	2.33
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.37	2.33	2.30	2.28
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.33	2.29	2.26	2.23
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.29	2.25	2.22	2.19
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.26	2.21	2.18	2.16
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2,45	2.39	2.35	2.28	2.22	2.18	2.15	2.12
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.20	2.16	2.12	2.10
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.17	2.13	2.10	2.07
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.15	2.11	2.08	2.05
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.13	2.09	2.05	2.03
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.11	2.07	2.04	2.01
26	4.22	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.09	2.05	2.02	1.99
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.08	2.04	2.00	1.97
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.06	2.02	1.99	1.96
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.05	2.01	1.97	1.94
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.04	1.99	1.96	1.93
35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.04	1.99	1.94	1.91	1.88
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.95	1.90	1.87	1.84
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.95	1.89	1.85	1.81	1.78
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.86	1.82	1.78	1.75
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07	2.02	1.97	1.89	1.84	1.79	1.75	1.72
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00	1.95	1.88	1.82	1.77	1.73	1.70
90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94	1.86	1.80	1.76	1.72	1.69
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97	1.93	1.85	1.79	1.75	1.71	1.68
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.78	1.73	1.69	1.66
150	3.90	3.06	2.66	2.43	2.27	2.16	2.07	2.00	1.94	1.89	1.82	1.76	1.71	1.67	1.64
200	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.80	1.74	1.69	1.66	1.62
250	3.88	3.03	2.64	2.41	2.25	2.13	2.05	1.98	1.92	1.87	1.79	1.73	1.68	1.65	1.61
300	3.87	3.03	2.63	2.40	2.24	2.13	2.04	1.97	1.91	1.86	1.78	1.72	1.68	1.64	1.61
400	3.86	3.02	2.63	2.39	2.24	2.12	2.03	1.96	1.90	1.85	1.78	1.72	1.67	1.63	1.60
500	3.86	3.01	2.62	2.39	2.23	2.12	2.03	1.96	1.90	1.85	1.77	1.71	1.66	1.62	1.59
600	3.86	3.01	2.62	2.39	2.23	2.11	2.02	1.95	1.90	1.85	1.77	1.71	1.66	1.62	1.59
750	3.85	3.01	2.62	2.38	2.23	2.11	2.02	1.95	1.89	1.84	1.77	1.70	1.66	1.62	1.58
1000	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.89	1.84	1.76	1.70	1.65	1.61	1.58

 Table 4- (Continued): F-Distribution Table (5% Significance Level)

 F Distribution: Critical Values of F (5% significance level)

v 1	25	30	35	40	50	60	75	100	150	200
12	240.26	250 10	250 60	251.14	351 77	252.20	252.62	252.04	252.46	252 60
1	249.20	250.10	200.09	251.14	251.77	252.20	252.02	253.04	200.40	200.00
4	19.40	19.40	19.47	19.47	19.48	19.48	19.48	19.49	19.49	19.49
3	8.03	8.02	8.00	8.59	8.58	8.57	8.00	8.00	8.54	8.54
4	5.77	5.75	5.73	5.72	5.70	5.69	5.68	5.00	5.65	5.65
5	4.52	4.50	4.48	4.46	4.44	4.43	4.42	4.41	4.39	4.39
6	3.83	3.81	3.79	3.77	3.75	3.74	3.73	3.71	3.70	3.69
7	3.40	3,38	3.36	3.34	3.32	3.30	3.29	3.27	3.26	3.25
8	3.11	3.08	3.06	3.04	3.02	3.01	2.99	2.97	2.96	2.95
9	2.89	2.86	2.84	2.83	2.80	2.79	2.77	2.76	2.74	2.73
10	2.73	2.70	2.68	2.66	2.64	2.62	2.60	2.59	2.57	2.50
11	2.60	2.57	2.55	2.53	2.51	2.49	2.47	2.46	2.44	2.43
12	2.50	2.47	2.44	2.43	2.40	2.38	2.37	2.35	2.33	2.32
13	2.41	2.38	2.36	2.34	2.31	2.30	2.28	2.26	2.24	2.23
14	2.34	2.31	2.28	2.27	2.24	2.22	2.21	2.19	2.17	2.10
15	2.28	2.25	2.22	2.20	2.18	2.16	2.14	2.12	2.10	2.10
16	2.23	2.19	2.17	2.15	2.12	2.11	2.09	2.07	2.05	2.04
17	2.18	2.15	2.12	2.10	2.08	2.06	2.04	2.02	2.00	1.99
18	2.14	2.11	2.08	2.06	2.04	2.02	2.00	1.98	1.96	1.95
19	2.11	2.07	2.05	2.03	2.00	1.98	1.96	1.94	1.92	1.91
20	2.07	2.04	2.01	1.99	1.97	1.95	1.93	1.91	1.89	1.88
21	2.05	2.01	1.98	1.96	1.94	1.92	1.90	1.88	1.86	1.84
22	2.02	1.98	1.96	1 94	1.01	1.89	1.87	1.85	1.83	1.8
23	2.00	1.96	1 03	1 01	1.88	1.86	1.84	1.82	1.80	1 70
24	1 07	1.04	1 01	1 80	1.86	1 84	1.82	1.80	1.78	1 77
25	1.96	1.92	1.89	1.87	1.84	1.82	1.80	1.78	1.76	1.75
26	1 94	1.90	1.87	1.85	1.82	1.80	1.78	1.76	1.74	1.73
27	1.92	1.88	1.86	1.84	1.81	1.79	1.76	1.74	1.72	1.71
28	1 91	1.87	1.84	1.82	1.79	1 77	1.75	1 73	1.70	1.69
20	1.89	1.85	1.83	1.81	1 77	1 75	1 73	1 71	1 69	1.6
30	1.88	1.84	1.81	1.79	1.76	1.74	1.72	1.70	1.67	1.60
35	1.82	1 70	1 76	1 74	1 70	1 68	1.66	1 63	1 61	1.60
40	1 78	1 74	1 72	1 60	1 66	1 64	1.61	1 50	1 56	1.55
50	1 73	1 60	1 66	1.63	1.60	1.58	1.55	1.52	1 50	1 49
60	1 60	1.65	1.62	1 50	1.56	1.53	1 51	1 48	1.45	1 4
70	1.66	1.62	1.59	1.57	1.53	1.50	1.48	1.45	1.42	1.40
80	1 64	1.60	1 57	1 54	1 51	1 48	1.45	1 43	1 30	1 39
00	1.63	1.50	1.55	1 53	1 40	1.10	1 44	1 41	1 39	1 3/
100	1.60	1.57	1.53	1.50	1.49	1.45	1.42	1 30	1.36	1.30
120	1.60	1.55	1.52	1.50	1.46	1.43	1.40	1.39	1 33	1.3
150	1.58	1.55	1.50	1.48	1.40	1.41	1.38	1.34	1.31	1.29
200	156	1.50	1 40	1.46	1 41	1.20	1.25	1 20	1.00	1.04
200	1.50	1.52	1.40	1.40	1.41	1.39	1.55	1.52	1.20	1.20
200	1.55	1.50	1.4/	1.44	1.40	1.5/	1.54	1.51	1.2/	1.23
100	1.54	1.50	1.40	1.43	1.39	1.30	1.35	1.30	1.20	1.2:
500	1.55	1.49	1.45	1.42	1.38	1.35	1.32	1.28	1.24	1.2
600	1.50	1.40	1 44	1 41	1.27	1.24	1.21	1 07	1.00	1.00
750	1.52	1.48	1.44	1.41	1.3/	1.34	1.51	1.2/	1.23	1.20
/50	1.52	1.4/	1.44	1.41	1.3/	1.54	1.30	1.20	1.22	1.20
000	1.52	1.4/	1.43	1.41	1.36	1.55	1.30	1.26	1.22	1.19

Table 5: T-Distribution Table t Distribution: Critical Values of t

Significance level

				Significa	nee teret		
Degrees of freedom	Two-tailed test: One-tailed test:	10% 5%	5% 2.5%	2% 1%	1% 0.5%	0.2% 0.1%	0.1% 0.05%
1		6.314	12.706	31.821	63.657	318.309	636.619
2		2.920	4.303	6.965	9.925	22.327	31.599
3		2.353	3.182	4.541	5.841	10.215	12.924
4		2.132	2.776	3.747	4.604	7.173	8.610
5		2.015	2.5/1	3.365	4.032	5.893	6.869
6		1.943	2.447	3.143	3.707	5.208	5.959
7		1.894	2.365	2.998	3.499	4.785	5.408
8		1.800	2.300	2.890	3.333	4.501	3.041
10		1.812	2.202	2.764	3.169	4.144	4.587
11		1 706	2 201	3 710	2 106	4.025	1 127
12		1.790	2.201	2.710	3.055	3 030	4 318
13		1 771	2 160	2.650	3 012	3 852	4 221
14		1 761	2.145	2.624	2.977	3 787	4 140
15		1.753	2.131	2.602	2.947	3.733	4.073
16		1.746	2.120	2.583	2.921	3.686	4.015
17		1.740	2.110	2.567	2.898	3.646	3.965
18		1.734	2.101	2.552	2.878	3.610	3.922
19		1.729	2.093	2.539	2.861	3.579	3.883
20		1.725	2.086	2.528	2.845	3.552	3.850
21		1.721	2.080	2.518	2.831	3.527	3.819
22		1.717	2.074	2.508	2.819	3.505	3.792
23		1.714	2.069	2.500	2.807	3.485	3.768
24		1.711	2.064	2.492	2.797	3.467	3.745
25		1.708	2.060	2.485	2.787	3.450	3.725
26		1.706	2.056	2.479	2.779	3.435	3.707
27		1.703	2.052	2.473	2.771	3.421	3.690
28		1.701	2.048	2.467	2.763	3.408	3.6/4
29		1.607	2.045	2.402	2.750	3.390	3.039
30		1.097	2.042	2.437	2.150	2.202	J.040
32		1.694	2.037	2.449	2.738	3.365	3.622
34		1.691	2.032	2.441	2.728	5.548	3.001
39		1.088	2.028	2.434	2.719	3 3 10	3.566
40		1.684	2.024	2.423	2.704	3.307	3.551
12		1 692	2.019	2 419	2 609	2 206	2 5 2 0
42		1.082	2.018	2.410	2.098	3.290	3.526
46		1.670	2.013	2.414	2.692	3 277	3 515
48		1.677	2.011	2.407	2.682	3.269	3,505
50		1.676	2.009	2.403	2.678	3.261	3.496
60		1.671	2.000	2.390	2.660	3.232	3.460
70		1.667	1.994	2.381	2.648	3.211	3.435
80		1.664	1.990	2.374	2.639	3.195	3.416
90		1.662	1.987	2.368	2.632	3.183	3.402
100		1.660	1.984	2.364	2.626	3.174	3.390
120		1.658	1.980	2.358	2.617	3.160	3.373
150		1.655	1.976	2.351	2.609	3.145	3.357
200		1.653	1.972	2.345	2.601	3.131	3.340
300		1.650	1.968	2.339	2.592	3.118	3.323
400		1.049	1.900	2.330	2.588	5.111	5.515
500		1.648	1.965	2.334	2.586	3.107	3.310
000		1.04/	1.964	2.333	2.584	5.104	3.307
80		1.645	1.960	2.326	2.576	3.090	3.291