Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) GRADE IMPROVEMENT EXAMINATIONS, JAN 2021

MEASUREMENTS AND INSTRUMENTATION [ELE 3202]

		REVISED CREDIT SYSTEM	
Time: 3	3 Hours	Date: 06 January 2021	Max. Marks: 50
Instruct	tions to Candidates:		
•	 Answer ALL the questions. 		
•	Missing data may be suitab	ly assumed.	
	 Passive component values 	may be selected from table in Page 3.	
1A.	Two different voltmeters a Fig. Q1A . The meters are a a) 5 V range, Se b) 10 V range, Se	are used to measure the voltage across R2 in as follows: ensitivity = 20 k Ω/V . Sensitivity = 20 k Ω/V . R2 = 1 k Ω and R3 = 10 k Ω . With appropria	the circuit in (03)
1B. 1C	Let $VS = 40V$, $RT = 20 RD$, identify which voltmeter i An AC Bridge as shown in th has inherent resistance R $0.0037\mu F$. The operating free R_4 is adjustable from 0 to 10 reactive balance are indepen L_x that can be measured with With suitable diagrams, deri plane wave shielding theory of good conductor is depend the shielding effectiveness in	R2 = 1 RΩ and R3 = 10 RΩ. With appropria ntroduces least error due to loading. e Fig. Q1B , is used to measure an unknown indu x . The bridge parameters are $R_1 = 20k\Omega$; equency $\omega = 10^5 rad/sec$. C_1 is adjustable from $k\Omega$. Derive expressions for R_x and L_x to show indent of each other. Also determine the largest th given parameters. ve the expressions for reflection and transmissi . Hence, prove that, the shielding effectiveness of lent on the reflection loss as well as absorption in dB for a 20 mil thick sheet of copper $\sigma = 5.8 \times$	ate calculations, actance L_x , which $R_2 = 50k\Omega$; $C_2 =$ 10 <i>pF</i> to 150 and (03) that resistive and values of R_x and on coefficients in f an infinite sheet loss. Determine 10^7 S/m at 1MHz (04)
10.	 given An electric source at A magnetic source at 	a distance 1 m from the shield t a distance 1 m from the shield	
2A.	Using appropriate reasoning kelvin's double bridge (KDB) of known standard resistanc	g and diagrams, justify the need for the interna). Further, Derive an expression for unknown re es in the KDB bridge	al ratio arms in a (03) sistance in terms
2B.	In an electrodynamometer in and mutual inductance chan deflection of 95 ⁰ . If 100V pot	l circuit is 8.2 $k\Omega$ (03) 5 μ H at full scale t, current of 3A at	

a power factor of 0.75 flows through current coil. Determine, the corresponding deflection if the spring constant is assumed to be $4.63 \times 10^{-6} N - m/rad$.

Shock sensors are widely used in detecting abnormal vibrations in industrial motors. They behave like piezoelectric sensors. In the application here, the motor runs at variable speeds and the maximum shock sensed is 50G. The electric signals from the shock sensor is fed to a charge amplifier configured in its charge mode. The charge source is defined to be 0.35pC/G. while the shunt resistor and capacitor were defined to be $10G\Omega$ and 390pF respectively. The

2C. cable length used here was 1 meter. The insulation material used in the cable is Polytetrafluoroethylene (PTFE) whose dielectric constant is 2.1 and the cable capacitance is 100pF. The analog platform is designed in such a manner that for zero input, the voltage output too should be zero. The resonant frequency of the shock sensor is 28KHz. Design the analog signal conditioning platform (amplifier along with the active filters) such that voltage output for a fixed pass band of 160Hz-2KHz is obtained.

With a neat diagram, explain the working of capacitive transducers working on the principle (03)

- 3A. of differential arrangement. Further, prove that the differential output voltage varies proportionately to the displacement of the movable plate. With a neat diagram, explain the principle of magnetic isolation using active devices. Highlight
- (03) 3B. the role played by phase sensitive modulators as well as phase sensitive demodulators in this signal isolation technique.

With a neat diagram, explain the working of an R-2R resistor ladder digital-analog converter. (04)

- 3C. For a reference voltage of 5V, create a table of analog voltage output of a 4-bit R-2R digitalanalog converter. Let $R = 100K\Omega$, while the feedback resistance $R_f = 400K\Omega$. The unbalanced voltage of a resistance bridge is to be amplified 200 times using a differential amplifier. The configuration is shown in **Fig. Q4A** with R= 1k Ω and $x = 2 \times 10^{-3}$. Two amplifiers are available: (03)
 - Amplifier 1 with differential gain Ad =200 and CMRR= 80 dB
 - Amplifier 2 with differential gain Ad=200 and CMRR= 60dB. •

Find the values of V_0 for both the cases and compute the respective errors. Finally, draw conclusions as to which is the best amplifier to be selected for the application. Inserting a resistance R_3 in parallel with capacitance C in the high pass filter shown in Fig. **Q4B** turns it into a zero-pole circuit that finds applications in control.

- (03) Sketch the modified circuit and derive its mathematical model so as to justify its name. 4B.
 - Specify standard component values for a zero frequency of 100 Hz, a pole frequency of 1 KHz and a high frequency gain of 0dB.
 - Sketch its magnitude plot highlighting the pole and zero frequencies.

For a 4 bit binary weighted D/A converter having $R = 10K\Omega$; $R_f = 5K\Omega$ and $V_{ref} = -10V$, for an input binary word of 1101, determine the following:

4C.

ELE 3202

4A.

- Current through the MSB switch
- Output voltage of the D/A converter
- (03) With a neat diagram, explain the various elements of a Distributed control system (DCS). Also 5A. list out the advantages of using DCS for process control.
 - With a neat diagram and waveforms, for a suitable analog input, explain the working (03)
- of a Successive Approximation A/D converter with SAR (select the suitable number of 5B. bits).

(04)

(04)

- 5C.
- (04) With the help of neat block diagram explain in detail, the working of various stages in an ECG measuring system resulting in an accurate representation of the health of a patient's heart.

Standard Resistor Values (±5%)									
1.0	10	100	1.0K	10K	100K	1.0M			
1.1	11	110	1.1K	11K	110K	1.1M			
1.2	12	120	1.2K	12K	120K	1.2M			
1.3	13	130	1.3K	13K	130K	1.3M			
1.5	15	150	1.5K	15K	150K	1.5M			
1.6	16	160	1.6K	16K	160K	1.6M			
1.8	18	180	1.8K	18K	180K	1.8M			
2.0	20	200	2.0K	20K	200K	2.0M			
2.2	22	220	2.2K	22K	220K	2.2M			
2.4	24	240	2.4K	24K	240K	2.4M			
2.7	27	270	2.7K	27K	270K	2.7M			
3.0	30	300	3.0K	30K	300K	3.0M			
3.3	33	330	3.3K	33K	330K	3.3M			
3.6	36	360	3.6K	36K	360K	3.6M			
3.9	39	390	3.9K	39K	390K	3.9M			
4.3	43	430	4.3K	43K	430K	4.3M			
4.7	47	470	4.7K	47K	470K	4.7M			
5.1	51	510	5.1K	51K	510K	5.1M			
5.6	56	560	5.6K	56K	560K	5.6M			
6.2	62	620	6.2K	62K	620K	6.2M			
6.8	68	680	6.8K	68K	680K	6.8M			
7.5	75	750	7.5K	75K	750K	7.5M			
8.2	82	820	8.2K	82K	820K	8.2M			
9.1	91	910	9.1K	91K	910K	9.1M			

Standard Capacitor Values (±10%)									
10pF	100pF	1000pF	.010µF	.10µF	1.0µF	10µF			
12pF	120pF	1200pF	.012µF	.12µF	1.2µF				
15pF	150pF	1500pF	.015µF	.15µF	1.5µF				
18pF	180pF	1800pF	.018µF	.18µF	1.8µF				
22pF	220pF	2200pF	.022µF	.22µF	2.2µF	22µF			
27pF	270pF	2700pF	.027µF	.27µF	2.7µF				
33pF	330pF	3300pF	.033µF	.33µF	3.3µF	33µF			
39pF	390pF	3900pF	.039µF	.39µF	3.9µF				
47pF	470pF	4700pF	.047µF	.47µF	4.7μF	47uF			
56pF	560pF	5600pF	.056µF	.56µF	5.6µF				
68pF	680pF	6800pF	.068µF	.68µF	6.8µF				
82pF	820pF	8200pF	.082µF	.82µF	8.2µF				