Reg. No.

VII SEMESTER B. TECH (BIOTECHNOLOGY) END SEMESTER EXAMINATIONS (REGULAR), MARCH 2021 SUBJECT: BIOSTATISTICS & ANALYTICAL TECHNIQUES [BIO 4103] **REVISED CREDIT SYSTEM**

Time: 3 Hours

MAX MARKS 50

	Time: 3 HoursMAX. MARKS: 50											
		Instructions to Candidates:										
	✤ Answer ALL the questions.											
	 Missing data may be suitable assumed. 											
1A.	List and d	escribe the	compo	nents of	research	n desian	with a	n exa	ample			3
		of study is				•				ng variati	on in their	
1B.		-								5		2
	independent variable(s)? What is the alternative? A researcher studying bird vocalization cannot tell if she has already recorded a bird or											
1C.	not. Why r	night this c	ause a	problem	with her	data an	alysis	?				3
		nstructing a	roaros	ion mod			chock	tha fr		N		
	-	ors are nor	-			will you (JIECK			j ,		
1D.		ors have th	•									2
		ors are inde			•							-
		ors have a	•									
		ctivity (mM			given b	elow, 12	, 5, 22	2, 30,	7, 36, 1	14, 42, 1	5, 53, 25.	
2A.	•	ne IQR and	,	•	•							2
	Obtain lea	ast squares	s estima	ates of t	he para	meters i	n the	mode	el, y= f	3 ₀ +β ₁ x+	$\beta_1 x^2 + \epsilon$ for	
	given the	data. Draw	the cur	ve for pre	edicted r	esponse	. Expl	ain ye	our ans	wer.		
2B.	Substrate	e 10	10	15 2	20 2	20 2	5	25	25	30	35	4
20.	(g)											-
	Growth	73	78	85 9	90 9	91 8	7	86	91	75	65	
	rate											
	The luciferase enzyme in fireflies catalyzes the modification of luciferin, consuming bo							-				
	luciferin and ATP, and producing light. A series of experiments are performed in which 5											
	μ M luciferase enzyme is mixed with various concentrations of substrate S ₀ , and the											
	relative reaction rates are measured in terms of light emission rates (RLU), measured using a photomultiplier tube:											
2C.	using a pi	<u>S₀ (μM)</u>	5	10	20	40	80		200	500	1000	4
		RR	3	10	20	+0	00	2	200	500	1000	
		(RLU)	3554	6262	10115	14611	187	86	22672	24718	25484	
	From the data, estimate the V_{max} (in RLU) and K_M (in μ M) by least square analysis.											
	Determine ARD and R^2 also.											
	A 2 ⁵⁻¹ fractional factorial design was used to determine the significant variables that affect										+	
2.4	the enzyme activity. The experimental results are 6.2, 8.4, 9.5, 11.9, 7.5, 9.9, 10.1, 11.9,											
3A.	10.7, 12.0, 11.6, 13.0, 9.4, 11.4, 10.4 and 13.0. Estimate the main effects of each									.		
	parameters, six two-factor interactions, three three-factor interactions, one four-factor											

	interaction and fit into the model equation with its co-efficient. If the value of the residual													
	value is 4.01. Calculate the F value for linear variable.													
3B.	Construct the following plots for question number, 3A ; main effect plots, all possible two- factor interaction plots, cube plots for the response and plot a graph of response versus run order.						5							
	The following table is the result of 8-experiment PB design, so there are three du factors, labelled d1, d2, and d3, Determine the main effect, sum of square (SS), r square (MS) and F-ratio of each variable.								-					
		Run Number		A	D1	В	D2	С	D3	D	Yield			
4A.		1		+	-	-	+	-	+	+	10			3
47.		2		+	+	-	-	+	-	+	9			3
		3		+	+	+	-	-	+	-	10			
		4 5 6 7		-	+	+	+	-	-	+	9			
				+	-	+	+	+	-	-	8			
				-	+	-	+	+	+	-	7	_		
				-	-	+	-	+	+	+	7			
	8 7													
4B.	obtained scores higher than 100. Is there significant evidence that the applicants are not a random sample from the population used to standardize the test?							2						
	The Y data below were fit using a linear model in X using a spreadsheet and the output shown. Fill up the blanks.						e output	is						
	Regression Statistics			5		Coefficients								
	R Square		<u>(1</u>))			Intercept			βο				
4C.			18.(071		×	X variable 1 to X variable 7			β1-β7				3
	ANOVA		<u> </u>											
			df		SS		MS			F		- crit		
	Regression		<u>(2)</u>		<u>(5)</u>		<u>(7)</u>			<u>(9)</u>		<u>(10)</u>		
	Residual		<u>(3)</u>		<u>(6)</u>		<u>(8)</u>							
	Total		<u>(4)</u>		11455.	94								
4D.	 Construct a 2⁶⁻² fractional factorial design with high resolution possible. What are the generators of your design? What us defining relation of your design? What is confounded with the main effect 3 of your design? What is confounded with 1x2 interaction? 							2						

A chemical engineer is interested in determining the operating conditions that maximize the yield of a process. The engineer suspects that two factors namely reaction time and reaction temperature influence the yield. Currently the process is set at a reaction time of 35 minutes and reaction temperature of 155° and the yield is only 40 %. Because it is

unlikely that the current operating region contains the optimum, the engineer decides to fit a lower order polynomial model to the vield

$$y = 40.44 + 0.775x_1 + 0.325x_2$$
 and

5A. then move to the optimum using steepest ascent method as shown below.

- i. Is there any curvature in the model?
- ii. Why the higher order model terms are missing in the above regression model. Explain
- iii. How do you proceed to the optimization using RSM?

EXP	STEPs	X1	X2	Y	
.NO.	Δ	5	2		
1	origin	35	155	40.3	
2	origin + ∆	?	?	41	
3	origin + 2∆	?	?	42.9	
4	origin +3 ∆	?	?	47.1	3
5	origin + 4∆	?	?	49.7	-
6	origin + 5∆	?	?	53.8	
7	origin + 6∆	?	?	59.9	
8	origin + 7∆	?	?	65	
9	origin + 8∆	?	?	70.4	
10	origin +9 ∆	?	?	77.6	
11	origin + 10∆	?	?	80.3	
12	origin + 11∆	?	?	76.2	

5B Genetic theory states that children having one parent of blood type *A* and the other of blood type *B* will always be of one of three types, *A*, *AB*, *B* and that the proportion of three types will on an average be as 1:2:1. A report states that out of 300 children having one *A* parent and *B* parent, 30 per cent were found to be types *A*, 45 per cent per cent type *AB* and remainder type *B*. Test the hypothesis by chi-square test and degree of freedom (Table value of $\Box 2$ at 5 per cent level of significance is 5.991.).

5C. The β-carotene has λ_{max} 450 nm, and $\varepsilon = 15,000 \text{ m}^2 \text{ mol}^{-1}$. Calculate the absorption expected for a solution in which 0.1 mg has been dissolved in 10 ml of water with a path length of 1 cm.

Sucrose concentration in a fermentation broth is measured using HPLC. Chromatogram peak areas are measured for five standard sucrose solutions to calibrate the instrument. Measurements are performed in triplicate with results as follows:

i.Find an equation for sucrose concentration as a function of peak area using simple linear regression.

ii.A sample containing sucrose gives a peak area of 209.86, what is the sucrose concentration?

5D.

Sucrose conc.	Deals area
(g/L)	Peak area
6	55.55, 57.01,57.95
12	110.66,114.76,113.05
18	168.9,169.44,173.55
24	233.66,233.89,230.67
30	300.45,304.56,301.11

3