Reg. No.



## SEVENTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2020/JANUARY 2021 SUBJECT: DIGITAL IMAGE PROCESSING (ECE - 4006)

## TIME: 3 HOURS

MAX. MARKS: 50

## Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Calculate the 4-point 2D DCT for the following sub-image in the coloured cell.

| 5 | 2 | 5 | 0  |
|---|---|---|----|
| 0 | 1 | 3 | 1  |
| 2 | 1 | 1 | 1  |
| 1 | 2 | 2 | -1 |

1B. Assuming continuous intensity values suppose that an image has the intensity PDF  $p(r) = \frac{2r}{(L-1)^2}$  for r between 0 to L-1 and p(r) = 0 for other values for r. Find the

transformation function that will produce an image whose intensity PDF is  $p(z) = \frac{3z^2}{(L-1)^3}$  for all z and p(z) = 0 for other values of z.

1C. Arrange the following 2D DCT coefficient in the zig-zag order.

| -145 | -30 | -61 | 27  | 56  | -20 | -2 | 0  |
|------|-----|-----|-----|-----|-----|----|----|
| 4    | -22 | -61 | 10  | 13  | -7  | -9 | 5  |
| -47  | 7   | 77  | -25 | -29 | 10  | 5  | -6 |
| -49  | 12  | 34  | -15 | -10 | 6   | 2  | 2  |
| 12   | -7  | -13 | -4  | -2  | 2   | -3 | 3  |
| -8   | 3   | 2   | -6  | -2  | 1   | 4  | 2  |
| -1   | 0   | 0   | -2  | -1  | -3  | 4  | -1 |
| 0    | 0   | -1  | -4  | -1  | 0   | 1  | 2  |
|      |     |     |     |     |     |    |    |

(4+3+3)

2A. Compute the 2D Fourier transform for the following 2D function:

 $f(x, y) = \sin 4\pi x + \cos 6\pi y$ 

$$f(x, y) = \sin(2\pi x + 3\pi y)$$

$$f(x, y) = \sin(3\pi x)\cos(5\pi y)$$

2B. Illustrate the morphological method to extract the boundary of the following object. (A;Object B: Structuring element).



2C. Find the Fourier transform, H(u,v) of this mask in the frequency domain.

$$h = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 16 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$

What type of filter is this, LPF, BPF or HPF? Justify your answer.

(4+3+3)

3A. Show that the Laplacian operator defined below is isotropic.

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$x = x'\cos\theta - y'\sin\theta$$
 and  $y = x'\sin\theta + y'\cos\theta$ 

- (x, y) are unrotated and (x', y') are rotated coordinates.
- 3B. Explain region based image segmentation. With an example describe split and merge technique.
- 3C. Estimate the pixel values in the question marked position shown in figure below by performing the spatial mean filters.



(4+3+3)

4A. Encode the message "lluure" for the given probability distribution for symbol set using Arithmetic coding.

| Symbol | Probability |
|--------|-------------|
| k      | 0.025       |
| 1      | 0.2         |
| u      | 0.1         |
| W      | 0.025       |
| e      | 0.3         |
| r      | 0.2         |
| ?      | 0.05        |

4B. The figure below shows the histogram of an image p(f) and the desired histogram g(f). Find the transformation function between them.



4C. Explain the Marr-Hilderth edge detector.

(4+3+3)

5A. Illustrate the concept of histogram specification for the following sub-image with 4X4 matrix of a 3 bit image and the specified histogram as shown below



- 5B. Consider a 3X3 spatial mask that averages the four closest neighbours of a point (x, y), but excludes the point itself from the average, find the equivalent filter H(u, v) in the frequency domain. Show that the result is a low pass filter.
- 5C. Define 4-8 and m- adjacency. Compute the lengths of the shortest 4- 8- and m- path between p and q in the image segment as shown below by considering  $V = \{2, 3, 4\}$ . Point p(4, 0) and point q(0, 4).

| 3(p) | 4 | 1 | 2 | 0    |
|------|---|---|---|------|
| 0    | 1 | 0 | 4 | 2    |
| 2    | 2 | 3 | 1 | 4    |
| 3    | 0 | 4 | 2 | 1    |
| 1    | 2 | 0 | 3 | 4(q) |

(4+3+3)