

SEVENTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION JANUARY/FEBRUARY 2021 SUBJECT: ERROR CONTROL CODING (ECE - 4024)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer ALL questions.
- Missing data may be suitably assumed.
- 1A. Verify whether the Set $S=\{0, 1, 2, ..., 7\} \mod 8$ and $H=\{0, 1, ..., 10\} \mod 11$ are fields. Justify your statements.
- 1B. A polynomial with coefficients over GF(2) satisfies $\{f(x)\}^{2^i} = f(x^{2^i})$, then state and prove similar condition if f(x) is a polynomial with coefficients over GF(3).
- 1C. Determine the minimal polynomial of α^{11} over GF(2⁴) using p(x)=x⁴+x+1.
- 2A. A linear block C(n, k) is defined by the generator matrix $G = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$.

Determine

- i. G & H matrices in systematic form
- ii. Possible code words & weight distribution
- iii. Error pattern and corresponding syndrome
- iv. Determine the syndrome and the corrected code vector for the received vectors R1=(101101) and (010010).
- v. State the standard array with at least first two rows and two columns
- 2B. Draw the cyclic Hamming decoding circuit using $g(x) = 1+x^2+x^5$. Explain how this circuit is modified to implement (25, 20) shortened decoder. Explain every step with all necessary computations.

(5+5)

(3+3+4)

- 3A. Explain the design and implementation of the syndrome circuit for a triple error correcting BCH code over $GF(2^4)$. Use $p(x)=1+x+x^4$. Explain the design steps clearly.
- 3B. Design the Chien's searching algorithm for a triple error correcting BCH code over GF(2⁴), if the error location polynomial is $1 + \alpha^5 x^2 + \alpha^{12} x^3$.

(5+5)

4A. A triple error correcting BCH code of length 15 is used, and if the received vector is $r(x)=x^2+x^{10}$, determine the syndromes, error location polynomial, error polynomial and corrected code polynomial.

4B. The convolutional encoder is defined by $g^{(1)}=(111)$ and $g^{(2)}=(101)$. Represent the encoder in state diagram, tree diagram and trellis diagram for 6 time slots. Using trellis diagram, determine the code word for a given message (110011).

(6+4)

- 5A. A triple error correcting RS code of length 15 is used. Decode received polynomial $r(x) = \alpha^9 x^7$.
- 5B. Determine the generator sequences for a convolutional encoder shown in Figure. 5B. Determine the encoder generator matrix G. The encoder is fed with two input sequences u⁽¹⁾=(0 1 1 0) & u⁽²⁾= (1 1 1 1). Compute the output sequence of an encoder by applying:
 i. convolution operation ii. G matrix.

(5+5)

Figure. 5B