

* (A constituent unit of MAHE, Manipal)

FIFTH SEMESTER BTECH. (MT) DEGREE END SEMESTER EXAMINATION MARCH 2021 SUBJECT: VIDEO CODEC AND STANDARDS (ECE - 4092)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. i. Explain Transform coding with neat block diagram.
 - ii. Segment the given shape using split and merge technique.

- 1B. i. Explain the energy compaction in discrete cosine transform.
 - ii. Arrange the following 2D DCT coefficient in the zig-zag order

U							
-145	-30	-61	27	56	-20	-2	0
4	-22	-61	10	13	-7	-9	5
-47	7	77	-25	-29	10	5	-6
-49	12	34	-15	-10	6	2	2
12	-7	-13	-4	-2	2	-3	3
-8	3	2	-6	-2	1	4	2
-1	0	0	-2	-1	-3	4	-1
0	0	-1	-4	-1	0	1	2

(5+5)

2A Perform the motion estimation and compensation between the current and the reference frame as shown in the below table. (Current block is highlighted as Red colour).

Current Frame								
7	0	5	1	6	5	6		
2	6	7	6	0	1	2		
0	2	5	0	3	5	6		
7	8	7	2	3	0	1		
6	7	8	0	5	5	6		
4	2	0	4	5	3	4		
5	4	6	1	2	3	4		

Reference Frame							
7	0	5	1	6	5	6	
2	6	7	6	0	1	2	
0	2	2	1	4	5	6	
7	8	4	4	3	0	1	
6	7	0	0	5	5	6	
4	2	0	4	5	3	4	
5	4	6	1	2	3	4	

2B. Explain first and second order derivative with a neat example and explain its significance in thick and thin edge detection

(5+5)

- 3A. Explain H.264 Encoder and Decoder with neat block diagram.
- 3B. Find the Fourier transform, H(u,v) of this mask in the frequency domain.

$$h = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 16 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$

What type of filter is this, LPF, BPF or HPF? Justify your answer.

(5+5)

4A. Define 4-8 and m- adjacency. Compute the lengths of the shortest 4- 8- and m- path between p and q in the image segment as shown below by considering $V = \{2,3,4,5\}$. Point p and point q.

2	2	4	6	5	0	3	4(q)
1	0	5	6	2	3	4	2
3	0	5	1	2	3	5	6
7	0	6	5	4	3	0	0
7	6	1	2	4	5	6	0
0	6	5	7	3	4	5	1
1	0	0	3	4	5	6	5
4(p)	3	2	1	3	4	5	5

(5+5)

4B. Assuming continuous intensity values suppose that an image has the intensity PDF $p(r) = \frac{2r}{(L-1)^2}$ for r between 0 to L-1 and p(r) = 0 for other values for r. Find the transformation function that will produce an image whose intensity PDF is $p(z) = \frac{3z^2}{(L-1)^3}$ for all z and p(z) = 0 for other values of z.

(5+5)

5A. Encode the message DEPARTMENT using Arithmetic coding for the given probability distribution.

Symbol	D	E	Р	А	R	Т	М	N
Probability	.1	.2	.1	.1	.1	.2	.1	.1

5B. Calculate the 4-point 2D DCT for the following sub-image at the specified location.

63	45	39	55
57	61	34	52
60	65	57	45
49	38	29	45

(5+5)