ECE - 1051: Basic Electronics List of Formulae | 1. | Diode Current | $I_D = I_s \{ e^{\frac{kV_D}{T_K}} - 1 \}$ | I_s : Reverse saturation current V_D : Bias potential $k = 11,600/\eta$ T_K : Operating temperature in kelvin. | |----|--|--|--| | 2. | Ripple Factor of
Half-wave rectifier
with capacitor filter | $ rac{1}{2\sqrt{3}fCR_L}$ | f: frequency.C: Capacitance.R_L: Load resistance. | | 3. | Ripple Factor of
fullwave rectifier with
capacitor filter | $ rac{1}{4\sqrt{3}fCR_L}$ | f: frequency.C: Capacitance.R_L: Load resistance. | | 4. | DC output voltage of
Half-wave rectifier | $\frac{2fCR_L}{1+2fCR_L}$ | f: frequency C: Capacitance R _L : Load resistance | | 5. | DC output voltage of full-wave rectifier | $\frac{4fCR_L}{1+4fCR_L}$ | f: frequency C: Capacitance R _L : Load resistance | | 6. | Emitter Current of Bipolar junction transistor | $I_E = I_C + I_B$ | I_C : Collector current I_B : Base current | | 10. | Common Mode
Rejection Ratio
(CMRR) | $CMRR = 20\log(\frac{A_d}{A_{cm}})$ | A_d :Differential voltage gain A_{cm} :Common mode voltage gain | |-----|--|--------------------------------------|---| | 11. | Time period of output
of Operational
amplifier based
square wave
generator | $T = 2RCln(\frac{1+\beta}{1-\beta})$ | β : Feedback factor $= \frac{R_2}{R_1 + R_2}$ R: Resistance. C: Capacitance | | 12. | Output voltage of
Differential
Amplifier | Vo = AdVd + AcmVcm | A_d : Differential voltage gain A_{cm} : Common mode voltage gain. V_d : Differential voltage. V_{cm} : Common mode voltage. | |-----|--|--|--| | 13. | Commutative Law | Property 1: $(x + y) = (y + x)$
Property 2: x . $y = y$. x | x,y,zare Boolean
Variables | | 14. | Associative Law | Property 1: $(x + y) + z = x + (y + z)$
Property 2: $(x. y)z = x(y. z)$ | | | 15. | Distributive Law | Property 1: $x (y + z) = x$. $y + x$. z
Property 2: $x + x$. $y = x + y$ | | | 16. | DeMorgan's
Theorem | Theorem 1: $\bar{x} + \bar{y} = \bar{x}$. \bar{y}
Theorem 2: $\bar{x} \cdot \bar{y} = \bar{x} + \bar{y}$ | | |-----|-------------------------------|--|---| | 17. | Amplitude
Modulated signal | $S(t) = A_c[1 + k_a m(t)]Cos(2\pi f_c t)$ | A_c : Amplitude of carrier signal. ka : Amplitude sensitivity. $m(t)$: Modulating signal. f_c : frequency of carrier signal. | | 18. | Modulation Index of AM Signal | μ = $k_am(t)$ | k_a : Amplitude sensitivity. $m(t)$: Modulating signal. | | 19. | Frequency
Modulated signal | $S(t) = A_C Cos[2\pi f_c t + 2\pi k_f \int_0^t m(t)dt]$ | A_c : Amplitude of carrier signal. k_f : Frequency sensitivity. $m(t)$: Modulating signal. f_c : frequency of carrier signal | | 20. | Carson's rule | $B_T = 2(\Delta f + f_m)$ | Δf : Frequency deviation. f_m : frequency of modulating signal |