

III SEMESTER B.TECH. EXTERNAL EXAMINATIONS JAN' 2022 SUBJECT: FLUID FLOW OPERATIONS [BIO 2154]

Date of Exam: 20/01/2022 Time of Exam: 4.00 PM – 4.50 PM Max. Marks: 30

PART-A

https://forms.office.com/r/kLkSiHqckZ

Q. No.		Marks	со	BLT
1.	 Non-linear relationship between shear stress and shear rate exists in a. Newtonian fluids b. **Non-Newtonian fluids c. Both d. None of these 	1	1	2
2.	The flow in a pipe whose valve is being opened or closed gradually is an example of a. Rotational flow b. Steady flow c. **Unsteady flow d. Compressible flow	1	1	2
3.	 The Bernoulli's equation written in the conventional form P/ςg + v²/2g + h = constant represents total energy per unit of certain quantity. Identify this quantity from the choices given below a. Energy per unit mass b. **Energy per unit weight c. Energy per unit volume d. Energy per unit specific weight 	1	1	2
4.	The fluid property, due to which, mercury does not wet the glass is a. Surface tension b. Viscosity c. Adhesion d. **Cohesion	1	1	2
5.	A pressure of 50 m head of water is equal to a. 50 kPa b. **490.5 kPa c. 4905 kPa d. 49.05 kPa	1	1	3
6.	The flow of a liquid through tapering pipe at a constant rate is an example of flow. a. Steady uniform	1	1	3

	b. Unsteady non uniform			
	c. **Steady non uniform			
	d. Unsteady uniform			
	A solid can resist which of the following stresses?		1	
	a. Tensile			
7.	b. Compressive	1	1	3
	c. Shear			
	d. **All of them			
	A Newtonian fluid is one in which the viscosity			
	a. **is constant regardless of the stirrer speed or mixing time			
8.		1	1	3
0.	b. Changes during mixing but returns to its original state after mixing	•	•	0
	c. Increases with increasing stirrer speed			
	d. Decreases with increasing stirrer speed			
	A liquid flows through pipes 1 and 2 with the same flow velocity. If the ratio of			
	their pipe diameters $D_1:D_2$ be 3:2, what will be the ratio of the head loss in the			
9.	two pipes?			
	a. 3:2	1	2	4
	b. 9:4			
	c. **2:3			
	d. 4:9			
	Navier-Stokes equation describes the motion of			
	a. Solid substance			
10.	b. Non-viscous fluid	1	2	2
	c. **Viscous fluid			
	d. Gas			
	The velocity profile for Poiseuille flow?			
	a. Zero			
11.	b. Constant	1	2	2
	c. Linear			
	d. **Quadratic			
	In a hydro-project a turbine has a head of 50 m. The discharge in the feeding			
	penstock is 3.0 m^3 /s. If a head loss of 5 m takes place due to losses, and a power			
12.	of 1000 kW is extracted, the residual head downstream of the turbine is			
	a. 5.0 m	1	2	3
	b. 15.95 m			
	c. **11.00 m			
	d. 20.95 m			
	A two-meter-high tank is full of water; a hole is made in the middle of the tank.			
	The speed of efflux is;			
13.	a. 4.9 m/s	4	•	~
	b. 9.0 m/s	1	2	3
	c. **4.42 m/s			
	d. 3.75 m/s			
	$1_{11} = 4 + 1_{11} + 1_{12}$			
	In a turbine having a flow of 1.2 m^3 /s the net head is 120 m. if the efficiency of the turbine is 00 % the sheft neuron developed in hW/ is			
14.	the turbine is 90 % the shaft power developed, in kW, is	1	2	3
	a. 1440			
	b. 1566			

	c. 160			
	c. 160 d. **1270			
	u. · · 1270			
15.	In a pump the suction and delivery pipes are of the same size and are at the same level. At a given discharge the loss of head between a point A on the suction side and a point B on the delivery side is 3.0 m. If the pressure at point B is 120 kPa and the head developed by the pump is 10 m, the pressure at point A is a. **51.5 kPa b188.6 kPa c7.25 kPa d. 29.37 kPa	1	2	3
	a. Buoyant force = drag	-		
16.	b. Weight of the body = buoyant force	1	2	4
	c. **weight of the sphere = buoyant force +drag			
	d. Drag = weight			
	A streamlined body is defined as a body about which			
17.	a. The skin friction is zero	4	n	A
17.	b. The skin friction is minimum	1	2	4
	c. The thickness of the body is minimum			
	d. **the separation point occurs on the far downstream part of the body			
	The shape of a streamlined body is such as to			
	a. Fix the separation points as much ahead as possible			
18.	b. **Shift the boundary layer separation to the rearmost part thereby	1	2	4
	considerably reducing the wake-size			
	c. Make the streamline pattern symmetrical			
	d. None of the above			
	The terminal velocity of a body in a stationary mass of fluid corresponds to the			
	situation when the a. Body acquires a constant velocity in any direction			
19.	 b. **Net force acting on the body equals zero 	1	2	2
	c. Weight of the body equals the buoyancy force acting on it			
	d. Net force acting on the body acts in verticle direction			
	For liquid flow through a packed bed, the superficial velocity as compared to			
	average velocity through the channel in the bed is			
20.	a. more	1	3	2
20.	b. **less	I	5	4
	c. equal			
	d. Independent of porosity			
	When a circular cylinder is rotated in a uniform flow, a lift force is produced on			
	the cylinder which is caused by			
21.	a. **The pressure difference between the two halves, the bottom-half being	4	4	2
	subjected to a higher pressure	1	1	2
	b. The symmetrical streamline patterns			
	c. The shear stresses due to viscous action			
	d. None of the above			

22.	Which factor is considered in Ergun equation when the Reynold's number is greater than 1000? a. 150 b. **1.75 c. 4/6	1	3	3
23.	 d. 72 The ratio of the specific weight of the liquid to the specific weight of a standard fluid is known as a. Specific volume b. Weight density c. **Specific gravity 	1	1	4
24.	 d. viscosity Inclined single column manometer is useful for the measurement of pressure. 1. **small 2. medium 3. high 4. negative 	1	1	4
25.	The total energy represented by the Bernoulli's equation {P/w + V ² /2g + z} has the units: 1. Nm/s 2. Ns/m 3. Nm/m 4. **Nm/N	1	2	2
26.	 Any pressure measured above the absolute zero of pressure is termed as a. Atmospheric pressure b. Gauge pressure c. **either of the above d. None of the above 	1	1	4
27.	For turbulent flow in smooth pipes, the entrance length is taken as a. 20 b. **50 c. 80 d. 115	1	2	3
28.	Velocity head is given by a. V/g b. $**V^2/2g$ c. $V^3/2g$ d. $V^2/2g^2$	1	2	2
29.	The type of flow in which the velocity at any given time does not change with respect to space is called a. Steady flow b. Compressible flow c. **Uniform flow d. Rotational flow	1	1	4

30.	The vi a. b. c. d.	scosity of liquids with increase in temperature. increases first increases and then increases first increases and then decreases **decreases	1	1	4
CO: C	ourse Out	come; BLOOM TAXONOMY LEVEL: 1-Remember, 2-Understand, 3-Application, 4-Analysis, 5-E	Evaluation, 6-0	Creation	

Name & Signature of course coordinator Name & Signature of scrutinizer

Signature of HOD

III SEMESTER B.TECH. EXTERNAL EXAMINATIONS JAN' 2022

SUBJECT: FLUID FLOW OPERATIONS [BIO 2154]

Date of Exam: 20/01/2022 Time of Exam: 2:00 PM - 3:45 PM Max. Marks: 20

Instructions to Candidates:

✤ Answer ALL the questions & missing data may be suitable assumed

Q. No.				Marks	СО	BLT
1A.	Packed bed of small cylindrical particles (D = H = 0.0254 m) Void, $\varepsilon = 0.6$ Height of the bed, L = 5.66 m Air enters at 394.3 K and 2.2 atm air (viscosity = 2.5×10^{-5} and density = 1.221 kg/m ³) Air flow rate = 3.55 kg/m ² .s (based on empty cross sectional area of the bed). What is the pressure drop?				3	2-4
1B.	A substrate solution of density vertically upwards through a be of approximately spherical part At approximately what mass ra and (b) Transport of particles o 0.58.	4	3	2-4		
1C.	anaerobic organism. A Rushto speed of 180 rpm. The densi requirements when the viscosit the following relationships for	Transition $N_P = 700 / Re_i$				2-4
2A.	A venturimeter of throat diameter 4 cm is fitted into a 10.5 cm diameter water pipeline. The coefficient of discharge is 0.96. Calculate the flow in the pipeline when the reading on a mercury-water differential U-tube manometer connected to the upstream and the throat sections shows a reading of 15 cm. If the energy loss in the downstream divergent cone of the meter is 10 times the velocity head in the pipe, calculate the total head loss of the meter.		4	4	2-4	

2B.	Design the diameter of a steel pipe to carry water (v = 1 x 10 ⁻⁶ m ² /s) with a mean velocity of 1.0 m/s. The head loss is to be limited to 10 cm per 100 m length. The effective roughness height can be taken as 0.45 mm. Use the following empirical formula for the friction factor. $f = 0.0055 \left[1 + \left(2000 \frac{\varepsilon_s}{D} + \frac{10^6}{Re} \right)^{1/3} \right]$	4	2	3-4
2C.	A glass sphere (relative density = 2.8) 3.0 mm in diameter is observed to have a fall velocity of 1.75 cm/s in a oil of density 920 kg/m ³ . Estimate the coefficient of dynamic viscosity of the oil. Assume Stoke's law is valid.	2	2	3-4
CO: C				

Name & Signature of course coordinator

Name & Signature of scrutinizer

Signature of HOD