

THIRD SEMESTER BTECH. (E & C) DEGREE PROCTORED ONLINE EXAMINATION JANUARY 2022

SUBJECT: Computer Organization and Architecture (ECE - 2152)

TIME: 75 min (9.20 AM to 10.35 AM)

MAX. MARKS: 20

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- Answer script must be a single pdf, good visibility of all texts and numbers.
- Name the file as: RegistrationNumber_SubjectCode_dd_JAN2022
- Upload correct pdf properly named well before 10.45 AM

Q. No.	Questions						A*	В*
1A	erform 448 ÷ 17 using restoring method with clear steps. Draw the flow chart.					CO2	C4	L5
1B	Compute the following				3	CO2	C4	L2
	(i) Convert (-19.875) ₁₀ into its equivalent 32-bit IEEE floating-point format.							
	(ii) Convert C009999A H IEEE floating-point number into its equivalent decimal value.							
	(iii) Perform (-0.5 x 0.4375) using binary floating-point multiplication algorithm							
1C	With the help of a diagram, explain the working principle of MAC unit in Digital signal processor. Write the significance of guard bits.					CO5	C2	L2
	Design an arithmetic unit of ALU for the four bit data and S0, S1 are select lines	ons. Here, A, B are	4	CO1	C1	L6		
	Tour on data and 50, 51 are select lines							
	S1	S0	Function					
2A	0	0	B - A					
	0	1	B + 1					
	1	0	2A					
	1	1	A - 1					
				I				_

ECE -4073 Page 1 of 2

2B.	Using the Hardwired control design approach, design the processing section with all	3	CO4	C1	L6
	the required control signals for the following register transfer description. Also, draw				
	the complete logical diagram with counter and decoder; and also give the state				
	diagram.				
	Declare registers A[8], B[8], C[3], Inbus[8], Outbus[8];				
	START: $A \leftarrow 0$, $B \leftarrow$ Inbus, $C \leftarrow 4$;				
	LOOP: $A \leftarrow A-B, C \leftarrow C-1;$				
	If C ‡ 0 then go to LOOP				
	Outbus ← A;				
	HALT: Go to HALT				
2C.	Differentiate between the following (Mention 3 key differences for each)	3	CO5	C2	L4
	(i) RISC and CISC processors				
	(ii) SIMD and MIMD processors				

M*--Marks, C*--CLO, A*--AHEP LO, B* Blooms Taxonomy Level

ECE -4073 Page 2 of 2