Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

THIRD SEMESTER BTECH. (E & C) DEGREE PROCTORED ONLINE EXAMINATION JANUARY 2022 SUBJECT: DIGITAL SYSTEM DESIGN (ECE - 2153)

MAX. MARKS: 20 TIME: 75 min (9.20 AM to 10.35 AM) **Instructions to candidates** Answer ALL questions. Missing data may be suitably assumed. • Answer script must be a single pdf, good visibility of all texts and numbers. Name the file as: RegistrationNumber ECE2153 27 JAN2022 Upload correct pdf properly named well before 10.45 AM. **Ouestions** Q.No. Write a structural Verilog code for the circuit shown in FigQ1A. Use the names given in tha same figure. 1 Q[0] Q[1] Q[2] w3 Т Т Q Т Q Q 1A clear clear clear w2 w1 1 clear _ clk _ FigQ1A Write a Verilog behavioural code for a 4-bit universal shift register which performs following tasks depending on select lines S_1S_0 . S_1S_0 Task 1B00 Hold 01 shift right 10 left shift 11 Parallel load Write a Verilog code for a 2:1 MUX using 'assign' statements and a testbench to generate all 1Cpossible test vectors for the above MUX and observe the corresponding outputs. [4+3+3] Consider a synchronous sequential circuit with one input x, two D flip-flops and one output z. The excitation equations are

2A
$$D_1 = \overline{x} \overline{Q_2} + \overline{Q_1} Q_2$$

$$D_2 = x \overline{Q_1} + \overline{Q_1} Q_2$$

	$z = \overline{x} Q_1 + \overline{Q_1} x \overline{Q_2}$ Write Next state table, Excitation table, State table and State diagram for the above mentioned
2B.	sequential circuit. Design a ripple decade down counter [1001, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000, 1001] using positive edge triggered T flip-flops. Assume T flip flops have active low asynchronous clear signal.
2C.	 Write Next state table, Excitation table and derive characteristic equation for a flip-flop with 2 inputs L & M and one output N. The truth table of the flip-flop is given below. Where N⁺ indicates next state of N. L M N⁺ 0 0 1 0 1 complement of N 1 0 N 1 1 0
	[4+3+3]