ECE 2154 NETWORK ANALYSIS (E&C)

Symbols a	nd Units
-----------	----------

Quantity	Symbols	Unit	Equivalent Unit	Abbreviation
Charge	q	coulomb	-	С
Current	<i>i</i> , I	ampere	coulomb/Second	amp
Flux Linkages	ψ	weber-turn	-	Wb
Energy	<i>w</i> , W	Joul	newton-meter	J
Voltage	<i>v</i> , V	Volt	Joul/coulomb	V
Power	р, Р	Watt	Joul/second	W
Capacitance	С	Farad	Coulomb/volt	F
Inductance	<i>L</i> , M	Henry	Weber/ampere	Н
Resistance	R	Ohm	volt/ampere	Ω
Conductance	G	Mho	ampere/volt	σ
Time	t	second	-	sec
Frequency	f	Hertz	cycles/second	H_Z
Frequency	ω	Radian/second	$\omega = 2\pi f$	-

Relationships for the parameters

Parameter	Basic	Voltage-Current Relationship	Energy
	Relationship		
$G = \frac{1}{R}$	v = Ri	$v_R = \operatorname{Ri}_R$ $i_R = \operatorname{Gv}_R$	$w_R = \int v_R i_R dt$
L(or M)	$\psi = Li$	$v_L = L \frac{\mathrm{di}_L}{\mathrm{dt}}$ $i_L = \frac{1}{L} \int v_L \mathrm{dt}$	$w_L = \frac{1}{2}Li^2$
$D = \frac{1}{C}$	q = Cv	$v_c = \frac{1}{c} \int i_c dt$ $i_c = C \frac{dv_c}{dt}$	$w_c = \frac{1}{2} C v^2$

Star – Delta Conversion:

	Star to delta conversion:	Delta Connection
	$R_A = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$	$a \circ _{R_B} \circ b$
Start - delta (wye-	$R_B = \frac{R_1 R_2 + R_2 \bar{R}_3 + R_3 R_1}{R_3}$	
delta) conversion	$R_C = \frac{R_1 R_2 + R_2 \ddot{R}_3 + R_3 R_1}{R_1}$	c o 0 d
	Delta to star conversion:	Star Connection
	$R_1 = \frac{R_A R_B}{R_A + R_B + R_C}$	$a \circ - \bigvee_{R_1} \qquad \bigvee_{R_2} \circ b$
	$R_2 = \frac{R_B R_C}{R_A + R_B + R_C}$	\geq^{R_3}
	$R_3 = \frac{R_A R_C}{R_A + R_B + R_C}$	c 00 d

Network Theorems:

Thevenin's Theorem	$R_{TH} = \frac{V_{oc}}{I_{sc}}$ Where, V_{oc} : Open circuit voltage across the terminals (Thevenin's voltage V_{TH}) I_{sc} : Current through the short circuited terminals (Norton's current I_N) R_{TH} : Thevenin's equivalent resistance R_N : Norton's equivalent resistance	Complex network R_L
Norton's Theorem	$R_N = \frac{V_{OC}}{I_{SC}}$ Where, V_{OC} : Open circuit voltage across the terminals (Thevenin's voltage V_{TH}) I_{SC} : Current through the short circuited terminals (Norton's current I_N) R_{TH} : Thevenin's equivalent resistance R_N : Norton's equivalent resistance	R_L
 For n number of parallel connected voltage sources with internal impedances For n number of series connected current sources with shunt impedances 	$E = \frac{\sum_{i=1}^{n} E_i Y_i}{\sum_{i=1}^{n} Y_i} \text{in series wi}$ $I = \frac{\sum_{i=1}^{n} \frac{I_i}{Y_i}}{\sum_{i=1}^{n} \frac{1}{Y_i}} \text{in shunt with}$	th Z = $\frac{1}{\sum_{i=1}^{n} Y_i}$ h Y = $\frac{1}{\sum_{i=1}^{n} \frac{1}{Y_i}}$
Tellegen's Theorem	If two networks are having the same grap then, $\sum_{k=1}^{b} V_{kN1} \times i_{kN1} = 0, \qquad \sum_{k=1}^{b} V_{kN1} \times i_{kN1} = 0$	h with different elements, $k_{N2} \times i_{kN2} = 0$
Maximum Power Transfer theorem	And $\sum_{k=1}^{D} V_{kN2} \times i_{kN1} = 0$, $\sum_{k=1}^{D} V_{kN1} \times \frac{i_L}{v_s}$	$i_{kN2} = 0$ $Z_0 = R_0 + jX_0$ $Z_L = R_L + jX_L$

	-	
Case	Details	
1	DC circuit	$R_{\rm L} = R_{\rm th} P_{max} = \frac{V_{TH}^2}{4R_{TH}}$
2	AC circuit with both load resistance and reactance are variable	$Z_L = Z_g^* \text{ i.e.,} R_L = R_g, X_L = -X_g$
3	AC circuit with load being purely resistive	$R_L = Z_g $ $= \sqrt{R_{g^2} + X_{g^2}}$
4	AC circuit with load being variable resistance and fixed reactance	$R_{L} = Z_{g} + jX_{L} $ $= \sqrt{R_{g}^{2} + (X_{g} + X_{L})^{2}}$

Coupled Circuits.

(i) Self Inductance

$$L = N \frac{d\varphi}{di}$$
 and in air $L = \frac{N\varphi}{i}$
 $v_L = L \frac{di}{dt} = N \frac{d\varphi}{dt}$
(ii) Mutual Inductance

(ii) Mutual Inductance

$$M = N_1 \frac{d\varphi_{21}}{di_2} = N_2 \frac{d\varphi_{12}}{di_1} \text{ and in air } M = N_1 \frac{\varphi_{21}}{i_2} = N_2 \frac{\varphi_{12}}{i_1}$$

Also $M = k_1 \sqrt{L_1 \times L_2}$

(iii) Dot Convention in Coupled Circuits.

Series RLC Resonant Circuit:

Resonant frequency $f_0 = \frac{1}{2\pi\sqrt{LC}}$ Quality Factor $Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$

Bandwidth $B = \frac{f_0}{Q} = \frac{1}{2\pi} \times \frac{R}{L}$ Impedance of the circuit $Z = R \times [1 + j2Q\delta]$

Parallel Resonant Circuit.

Anti resonant frequency, $f_{ar} = \frac{1}{2\pi} \times \sqrt{\frac{1}{LC}} \times \sqrt{1 - \frac{R^2C}{L}}$ Dynamic resistance, $Z_{ar} = R_{ar} = \frac{L}{\frac{RC}{R_{ar}}}$ Impedance of the circuit, $Z = \frac{R_{ar}}{1 + j2Q\delta}$

Transient Analysis:

Source free RL circuit	$\frac{di}{dt} + \frac{R}{L}i = 0$ $i(t) = I_0 e^{\frac{-Rt}{L}} \text{ where,}$ $I_0 \text{ is the initial current at time } t = 0$	$ \begin{array}{c} i(t) \\ + \\ \nu_R \\ - \\ R \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
Source free RC circuit	$\frac{dv}{dt} + \frac{v}{RC} = 0$ $v(t) = v(0)e^{\frac{-t}{RC}}$ $v_0 \text{ is the initial voltage across capacitor}$ at time $t = 0$	$C = \begin{bmatrix} i \\ + \\ v \\ - \end{bmatrix} R$
Solution of standard first order differential equation	$\frac{di}{dt} + Pi = Q$ $i = e^{-Pt} \int Q e^{Pt} dt + Ae^{-Pt}$	Total response = Forced response + Natural response
Source free Parallel RLC circuit	$\frac{d^2v}{dt^2} + \frac{1}{Rc}\frac{dv}{dt} + \frac{v}{Lc} = 0$ Characteristic Equation: $s^2 + \frac{1}{Rc}s + \frac{1}{Lc} = 0$ Roots: $s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - w_0^2}$ Where $\alpha = \frac{1}{2Rc}$, $w_0 = \frac{1}{\sqrt{Lc}}$	Natural Response
Source free series RLC circuit	$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$ Characteristic Equation: $s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$ Roots: $s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - w_0^2}$ Where $\alpha = \frac{R}{2L}$, $w_0 = \frac{1}{\sqrt{LC}}$	Natural Response

Laplace Transforms:

Laplace Transform	$F(s) = \int_0^{+\infty} f(t) e^{-st} dt$
Inverse Laplace Transform	$f(t) = L^{-1}F(s)$

Table of Laplace Transforms

f(t)	$F(s) = \int f(t)e^{-st} \mathrm{d}t$
<i>u</i> (<i>t</i>)	$\frac{1}{s}$
t	$\frac{1}{s^2}$
+n-1	1
$\frac{l}{(n-1)!}$ n is a integer	$\frac{1}{S^n}$
e ^{at}	$\frac{1}{s-a}$
e^{-at}	$\frac{1}{s+a}$
te ^{at}	$\frac{1}{(2-\alpha)^2}$
	$(s = u)^{-1}$
te ^{-at}	$\frac{1}{(s+a)^2}$
1	1
$\frac{1}{(n-1)}t^{n-1}e^{\mathrm{at}}$	$\frac{1}{(s-a)^n}$
$\frac{1}{(n-1)}t^{n-1}e^{-\mathrm{at}}$	$\frac{1}{(s+a)^n}$
$1 - \rho^{at}$	-a
	$\overline{s(s-a)}$
1	1
$-\sin\omega t$	$\frac{1}{-2+\frac{1}{2}}$
ω	$S^2 + \omega^2$
cosωt	-2 + - 2
1	$S^2 + \omega^2$
$1 - \cos \omega t$	ω^2
	$s(s^2 + \omega^2)$
$sin(\omega t + \theta)$	$ssin\theta + \omega cos\theta$
	$\frac{c^2 \pm \omega^2}{c^2 + \omega^2}$
$cos(\omega t \pm \theta)$	$\frac{5 \pm \omega}{s\cos\theta - \omega\sin\theta}$
$\cos(\omega t + 0)$	
	$S^2 + \omega^2$
$e^{-\alpha t}\sin\omega t$	$\frac{\omega}{(\ldots)^2 + 2}$
at .	$(s+a)^2 + \omega^2$
$e^{at}\sin\omega t$	$\frac{\omega}{(\ldots)^2 \cdots^2}$
	$(s-a)^2 + \omega^2$
$e^{-at}\cos\omega t$	$\underline{s+a}$
	$(s+a)^2 + \omega^2$
e ^{at} cos <i>wt</i>	s-a
	$\overline{(s-a)^2+\omega^2}$
sinhat	a
	$\overline{s^2 - a^2}$
coshat	$\frac{s}{s^2 - a^2}$
$\frac{d}{dt}f(t)$	sF(s) - f(0-)
$\frac{\frac{d^2}{dt^2}}{\frac{dt^2}{dt^2}}f(t)$	$s^{2}F(s) - sf(0-) - \frac{d}{dt}f(0-)$
$\frac{a^3}{dt^3}f(t)$	$\int s^{3}F(s) - s^{2}f(0-) - s\frac{a}{dt}f(0-) - \frac{a^{2}}{dt^{2}}f(0-)$

$\int f(t) dt$	$\frac{F(s)}{s}$
f(t-a)u(t-a)	$e^{-\mathrm{as}}F(s)$
$e^{-\mathrm{at}}f(t)$	F(s-a)
tf(t)	$\frac{-d}{\mathrm{ds}}F(s)$
$t^n f(t)$	$(-1)^n \frac{d^n}{\mathrm{d}s^n} F(s)$

Transform of Periodic waveform $F(s) = \frac{1}{1-e^{-Ts}} \times F_1(s)$ Initial Value Theorem $\lim_{t\to 0} f(t) = \lim_{s\to\infty} [sF(s)]$ Final Value Theorem $\lim_{t\to\infty} f(t) = \lim_{s\to0} sF(s)$ Convolution Integral $f(t) = L^{-1}[F_1(s)F_2(s)] = \int f_1(\tau)f_2(t-\tau) = \int f_2(\tau)f_1(t-\tau)$ Shifting TheoremIf $f(t) u(t) \leftrightarrow F(s)$
Then $f(t-a) u(t-a) \leftrightarrow e^{-as}F(s)$

Two Port Networks:

Network Parameters	Defining Equations
Z parameters	$V_1 = Z_{11}I_1 + Z_{12}I_2$
	$V_2 = Z_{21}I_1 + Z_{22}I_2$
Y parameters	$I_1 = Y_{11}V_1 + Y_{12}V_2$
	$I_2 = Y_{21}V_1 + Y_{22}V_2$
H parameters	$V_1 = h_{11}I_1 + h_{12}V_2$
	$I_2 = h_{21}I_1 + h_{22}V_2$
T parameters (ABCD)	$V_1 = AV_2 - BI_2$
	$I_1 = CV_2 - DI_2$

Parameter	Condition for Reciprocal Networks	Condition for Symmetrical Network
Ζ	$z_{12} = z_{21}$	$z_{11} = z_{22}$
у	$y_{12} = y_{21}$	$y_{11} = y_{22}$
ABCD	AD - BC = 1	
$A^1B^1C^1D^1$	$A^{1}D^{1} - B^{1}C^{1} = 1$	$A^1 = D^1$
h	$h_{12} = -h_{21}$	$\Delta_h = 1$
g	$g_{12} = -g_{21}$	$\Delta_g = 1$

Some parameter simplifications for passive, reciprocal Networks

Linear Wave shaping:

(i) Gain of High Pass RC Circuit = $\frac{1}{\sqrt{1 + \left(\frac{f_{\text{OL}}}{f}\right)^2}}$ (ii) Gain of Low pass RC Circuit = $\frac{1}{\sqrt{1 + \left(\frac{f}{f_{\text{OH}}}\right)^2}}$

(iii) General solution for a single time constant RC circuit : $v_o = v_f + (v_i - v_f) \times e^{\frac{-t}{\tau}}$

- (iv) Step Response to a high pass RC circuit. $v_o = Ve^{\frac{-t}{RC}}$ (v) Step Response to a Low pass RC circuit:

 $v_o = V(1 - e^{\frac{-t}{RC}})$ Rise time $t_r = 2.2$ RC

(vi) Ramp input response to a high pass RC circuit $v_o = \alpha RC(1 - e^{\frac{-t}{RC}})$

(vii) Ramp input response to a low pass RC circuit: $v_o = \alpha t - \alpha \operatorname{RC}\left(1 - e^{\frac{-t}{\operatorname{RC}}}\right)$