Department of Instrumentation and Control Engineering End Semester Examinations January 2022 Analog Electronic Circuits – ICE 2151

PART B Question Paper

Instructions: Answer All Questions, missing data may be suitably assumed Writing + Submission Time: 75 +10 minutes

1. For the circuit shown in Fig. Q1, find

i. The voltage at node 'X' by viewing 'M1' as a Common Source stage degenerated by the impedance seen at the source of 'M2'.

ii. The voltage at node 'Y' by viewing 'M1' as a source follower and 'M2' as a common gate stage.

iii. The differential voltage gain (V_X-V_Y)/Vin

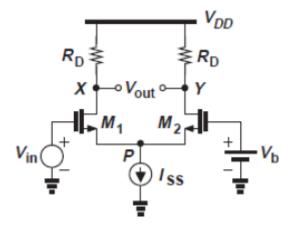
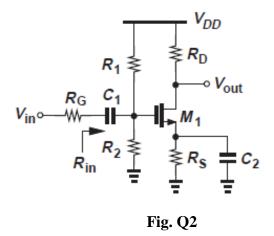



Fig. Q1

[4M]

- 2. Design a common source amplifier of Fig. Q2 satisfying the following conditions
 - i) When $\lambda = 0$, RG = 0, small signal gain is 5
 - ii) When $\lambda \neq 0$, RG = 0, small signal gain is 4.88
 - iii) When $\lambda = 0$, RG = 10k Ω , small signal gain is 4

Assume $V_{DD} = 1.8V$, $V_G = 1V$, $I_D = 2mA$, $R_S = 100\Omega$, $V_{TH} = 0.4V$, $\mu_n C_{OX} = 100\mu A/V^2$. With $R_G = 0$, what would be the maximum gain that could be obtained from the circuit? iv)

[4M]

[**3**M]

- 3. Design a circuit to drive a 50 Ω load with a voltage gain of 0.5 and a power budget of 10mW. Assume $\mu_n C_{ox} = 100 \ \mu A/V^2$, $V_{TH} = 0.5 \ V$, $\lambda = 0$, and $V_{DD} = 1.8 \ V$ [3M]
- 4. Consider a NMOS with W=2 μ m, L=0.18 μ m and 0.7V across its gate and source terminals. Determine it's all small signal parameters. Assume $\mu_n C_{ox}=100\mu A/V^2$, V_{th}=0.4V, λ =0 and V_{DD}=1.8V. [3M]
- 5. Find the loop gain and closed loop gain of the circuit shown in **Fig. Q5**.

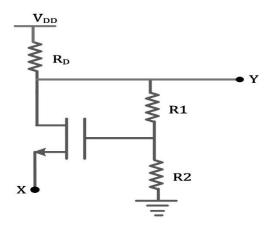


Fig. Q5

6. Calculate the oscillating frequency of a FET Hartley oscillator with C = 250 pF, $L_1 = L_2 = 1.5 mH$, and mutual inductance between L_1 and L_2 is 0.5 mH. [3M]
