

DEPARTMENT OF MECHATRONICS III SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER MAKE-UP EXAMINATIONS, APRIL 2022

SUBJECT: SENSORS AND INSTRUMENTATION [MTE 2155] 31.01.2022

Time: 75min +10 min MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- ❖ Missing data (if any) can be suitably assumed and justified.

Q. No		M	СО	PO	LO	BL
1A.	Write a ladder logic program that will turn ON light when a count reaches 20. The light has to go OFF when the count 30 is reached.	5	2	3	5	6
1B.	In wastewater industry, real-time sensing of surface temperature variations on concrete sewer pipes is paramount in assessing the rate of microbial-induced corrosion. However, the sensing systems are prone to failures due to the aggressively corrosive environmental conditions inside sewer assets. Thus, the customer needed to be supplied with full material, process control, testing, and safety documentation. Mention the steps to guide the customer to avoid such sensor failure risks.	3	3	6	18	3
1C.	Strain gauges are used for making cantilever type load cells as shown in Fig.Q1c. Demonstrate a configuration in which the strain gauges should be placed on the cantilever for maximum sensitivity: elucidate the number of strain gauges to be used for each measurement, the placement/ arrangement of the sensors and the electrical connections for measurement of resistance change. Fig. Q1C	2	3	2	2	4
2A	Factories now routinely use cages and guards to avoid unwanted interaction between humans and fixed robots, however as the Health and Safety Executive (HSE) has observed, new collaborative robots are being developed that are designed to be used in the same workspace as humans. Research conducted in Sweden and Japan has indicated that a large number of robotic incidents do not occur during normal operating conditions, but actually either	4	5	6	9	4

[MTE 2155] Page 1 of 4

	during programming, maintenance, or adjustments. Mention the three major steps which are involved in such a safety risk assessment procedure and give an example of a risk assessment matrix that could be utilized to quantitively measure the level of risk.					
2B	Draw the flowchart of the seven layers of OSI model.	4	4	2	2	1
2C	State and explain the working of any differential pressure type flowmeter.	2	3	1	1	2
3A	Construct a ladder logic diagram that will implement the following function:	5	2	3	5	3
	$X = ln [10 + A(B Cos^{-1} (4C+5))^{2}]$					
	If the result is greater than 100, then an output light 'P' will be turned ON. A, B and C are inputs.					
3B	Fig. Q3B shows the hierarchy of an Industrial Automation & Control System	3	4	1	1	2
	plant which consists of five levels. Identify the levels for each of the					
	following:					
	i. SCARA Robotii. Relays					
	iii. Programmable Logic Controller					
	/\ <u>\</u>					
	SAP PROPERTY \					
	SUPPLY CHAIN MANAGEMENT					
	Level-5					
	/ L					
	PLANT INTRANET & HMI Level-4					
	CONTROL NETWORK					
	Level-3 \					
	INPUT/OUTPUT \					
	Level-2					
	HART/ FIELDBUS					
	10 → 10 mA FIELD SENSORS AND ACTUATOR'S					
	/ 西西 ——————————————————————————————————					
	Fig. Q3B					
3C	What is the sensitivity of a J-type thermocouple with a temperature range of	2	3	1	1	3
	-100 to +1450°C and an output range of 0 to 20 V?	5	3			
4A	Strain gauges are bonded to a Duralumin cantilever and connected into a			1	1	3
	bridge circuit for maximum sensitivity. Each gauge has a resistance of 100 Ω and a gauge factor of 2.1. The input voltage is 4 V. The stress is 200 MN/m ²					
	and the modulus or elasticity for Duralumin is 70 GN/m ² .					

[MTE 2155] Page **2** of **4**

	 i. Calculate the output voltage of the bridge if two strain gauges are used for stress measurement (Fig. 4A1). Consider the use of 100 Ω of fixed resistances. ii. Calculate the output voltage of the bridge if four strain gauges are used for measurement of stress (Fig. 4A2) Strain gauge 1 Strain gauge 2									
	Fig. 4A1		Fig.	4A2						
4B	For a piezoelectric	•			_	3	3	1	1	3
4C	sensitivity 50 x 10 ⁻³				ressure of 60N?	2	3	1	2	4
	 Select suitable sensors for the following applications: Non-contact measurement of temperature of a furnace with temperature reaching 2000°C. Measure speed of a wheeled mobile robot developed mainly for indoor applications Measure the force applied by a robotic hand to pick an object iv. Measurement of high frequency vibrations 								_	-
5A	approximation of the RTD resistance-temperature characteristics, calculate the resistance of the sensor at 25 degree C.						3	1	1	3
	Temperature Senso	rs	CONSTANTS							
	Platinum RTDs		Alpha, α (°C¹)	0.00375 ±0.000029	0.003850 ±0.000010					
	FUNCTIONAL BEHAVIOR		Delta, δ (°C)	1.605 ± 0.009	1.4999 ± 0.007					
	$R_T = R_0(1+AT+BT^2-100CT^3+CT^4)$ $RT = Resistance (\Omega) at temperature T (°C)$		Beta, β (°C)	0.16	0.10863					
	R_0 = Resistance (Ω) at 0°C	ilule I (O)	A (°C¹) B (°C²)	3.81×10 ⁻³ -6.02×10 ⁻⁷	3.908×10 ³ -5.775×10 ⁷					
	T = Temperature in °C $A = \alpha + \alpha \delta$ $B = -\alpha \delta$	$C_{\tau<0} = -\alpha \beta$	C (°C4)	-6.0×10 ⁻¹²	-4.183×10 ⁻¹²					
	$\frac{100}{100} = \frac{100}{100^2} = \frac{100}{100^4} $									
	SPECIFICATIONS									
	Sensor Type	Thin film platinum RTD; $R_0 = 1000~\Omega @ 0^\circ C; \text{ alpha} = 0.00375~\Omega/\Omega/^\circ C$ $R_0 = 100~\Omega @ 0^\circ C; \text{ alpha} = 0.00385~\Omega/\Omega/^\circ C$ $\text{TFE Teflon:} -200^\circ \text{ to } +260^\circ C ~(-320^\circ \text{ to } +500^\circ \text{F})$ $\text{Fiberglass:} -75^\circ \text{ to } +540^\circ C ~(-100^\circ \text{ to } +1000^\circ \text{F})$ $\pm 0.5^\circ C ~\text{ or } 0.8\% ~\text{ of temperature, } ^\circ C ~(R_0 \pm 0.2\% \text{ trim), whichever is greater}$ $\pm 0.3^\circ C ~\text{ or } 0.6\% ~\text{ of temperature, } ^\circ C ~(R_0 \pm 0.1\% \text{ trim), whichever is greater}$								
	Temperature Range									
	Temperature Accuracy									
	Base Resistance and 1000 \pm 2 Ω (\pm 0.2%) @ 0°C Interchangeability, $R_{\rm o}$ \pm $\Delta R_{\rm o}$ 1000 \pm 1 Ω (\pm 0.1%) @ 0°C (optional)									

[MTE 2155] Page **3** of **4**

5B	State and explain three thermoelectric laws governing the principle of	3	3	1	1	2
	operation of thermocouples.					
5C	With neat diagrams, explain the construction, working and application of LVDT.	3	3	1	1	2

[MTE 2155] Page **4** of **4**