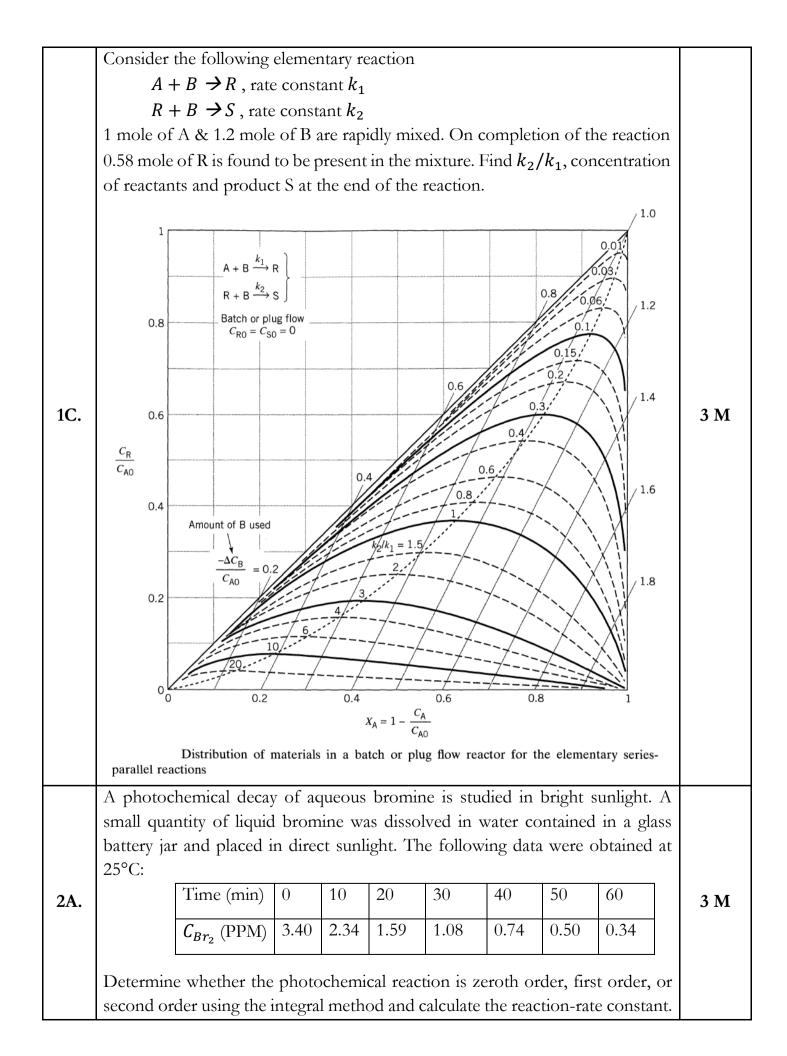


Vth SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS DEC-2021 (Descriptive Part-B)

SUBJECT: CHEMICAL REACTION ENGINEERING [CHE 3151]

REVISED CREDIT SYSTEM

Time: 75+10 Min


Date: 28-12-2021

Marks: 20 M

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.
- ✤ Use graphs wherever relevant.
- Refer to the Formula Book provided.

1A.	Consider a cylindrical batch reactor that has one end fitted with a frictionless piston attached to a spring. The gas phase reaction $A + B \rightarrow 8C$ with the rate expression $-r_A = k C_A^2 C_B$ is taking place in this reactor, given $k = 1 \left(\frac{ft^3}{lb \ mol}\right)^2 \cdot s^{-1}$. Equal moles of A & B are present at $t = 0$ Initial volume is $0.15 \ m^3$ The relationship between the volume of reactor and pressure within reactor is $V \ ft^3 = 0.1 \ P \ atm$. Temperature of system is kept constant at 600^0R Gas constant = $0.73 \ ft^3 \ atm/lb \ mol^0R$ What is the conversion of A when volume is $0.2 \ ft^3$?	4 M
1 B .	Water containing a radioactive species flows continuously through a well-mixed hold up tank. This gives time for radioactive material to decay into harmless waste. As it now operates, the activity of the exit stream is 1/7 of the feed stream. The plant would like to lower it still more. It was suggested that a baffle be inserted down the middle of the tank so that the holdup tank acts as two well-mixed tanks in series. Calculate the expected activity of the exit stream compared to the feed stream.	3 M

2B.	For the following enzymatic reactions derive rate law for Enzyme-Substrate- Complex-1 $(r_{E,S})$, Enzyme-Substrate-Complex-2 $(r_{E,Q})$ and product (r_P) expressed only in concentrations of enzyme (C_E) , substrate (C_S) , product species (C_Q) : 1. $E + S \leftrightarrow E.S$ Enzyme + Substrate 1 \leftrightarrow Enzyme-Substrate-Complex 1 2. $E.S \rightarrow Q$ Enzyme-Substrate-Complex 1 \rightarrow Product Species Q 3. $E + Q \leftrightarrow E.Q$ Enzyme + Product Species Q \leftrightarrow Enzyme-Substrate-Complex 2 4. $E.Q \rightarrow P + E$ Enzyme-Substrate-Complex 2 \rightarrow Product P + Enzyme	4 M
2C.	A radioactive tracer was injected as a pulse to a reactor and the effluent concentration was measured as a function of time. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3 M
