ECE 3153 Microprocessors

Description	Equation
NUMBER REPRESENTATION	
A base ten number <i>n</i> represented as an	$n = -b_{m-1}2^{m-1} + \sum_{i=0}^{m-2} b_i 2^i$
m bit two's complement number with b	
being individual bits value	
LOOK UP TABLE	
Index <i>i</i> range from 0 to some number <i>n</i> -	Address= table_addr + i*size_of_entry
<i>I</i> , and the starting address of the table is	
table_addr, the address of the ith entry	
DAC: change the VALUE(10-bit digital	The Analog voltage on AOUT pin is calculated as ((VALUE/1024) * VREF).
value) field in DACR (DAC Register).	
I2C: The frequency and duty cycle of	
SCL is decided using I2C0SCLL and	The frequency is calculated as follows: $I2CBitFrequency = \frac{F_{pclk}}{I2C0SCLL + I2C0SCLH}$
I2C0SCLH. I2C0SCLH contains the	
TON (High) time and I2C0SCLL	
contains the TOFF (Low) time	
PWM: A period of a pulse consists of	
an ON cycle (HIGH) and an OFF cycle	Duty cycle (in %) = $\frac{T_{ON}}{T_{ON} + T_{OFF}}$
(LOW). The fraction for which the signal	
is ON over a period is known as duty	
Real time clock	$PREINT = \mathrm{int} \left(\mathrm{PCLK} / 32768 \right) - 1$
	PREFRAC = PCLK - ((PREINT+1) * 32768)
Timer	Time of one clock period = 1 / clock frequency
Counter	External clock frequency = count of clocks / one second
UART0 baud rate	
	UART0Baudrate
	$= \frac{P_{CLK}}{DIV ADDVAL}$
	$16 * (256 * U0DLM + U0DLL) * \left(1 + \frac{D17 HB B V HB}{MULVAL}\right)$