

## FIFTH SEMESTER B. TECH (ELECTRONICS AND INSTRUMENTATION) PROCTORED ONLINE END SEMESTER EXAMINATION Feb. 22

SUBJECT: Modern Control Theory (ICE - 3153)

TIME: 9.20AM to 10.35 AM

DATE:19.02.22 MAX MARKS 20

## Note: Answer All questions.

| 1 | A | Using Silvester's Interpolation formulae obtain state transition matrix of the given system.                                                                              | 3 M |
|---|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   |   | $\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$                                                            |     |
|   | В | Design state feedback control law for the given regulatory system using Ackermann's formula,                                                                              | 4 M |
|   |   | $\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t);$ |     |
|   |   | The desired poles are at $-5 \& -5$                                                                                                                                       |     |
|   | С | Assuming minimal state variables, derive the state space model for the following system. $z_1$ and $z_2$ are two outputs of the system.                                   | 3 M |
|   |   | $k_1$ $m_1$ $m_2$ $f$                                                                                                                                                     |     |
|   |   | Fig. Q1. C                                                                                                                                                                |     |
| 2 | A | Define Lyapunov's linearization theorem. For the following systems, investigate whether the origin is stable, asymptotically stable or unstable.                          | 5 M |
|   |   | (1) $\dot{x}_1 = -2x_1 + x_1^3$ ; $\dot{x}_2 = -x_2 + x_1^2$ ; $\dot{x}_3 = -x_3$                                                                                         |     |
|   |   | (2) $\dot{x}_1 = -x_1;  \dot{x}_2 = -x_1 - x_2 - x_3 - x_1 x_3;  \dot{x}_3 = (x_1 + 1)x_2$                                                                                |     |

| В | For the nonlinear system given below use a quadratic Lyapunov function candidate to show that the origin is asymptotically stable. | 3 M |
|---|------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | $\dot{x}_1 = -x_2 - x_1(1 - x_1^2 - x_2^2);  \dot{x}_2 = x_1 - x_2(1 - x_1^2 - x_2^2)$                                             |     |
| С | With an example explain the concept of Lyapunov's direct method for stability definition.                                          | 2 M |