END SEMESTER EXAMINATIONS (DECEMBER 2021/JANUARY 2022) - QUESTION PAPER - PART A

COURSE CODE : ICE 3153

COURSE NAME : Modern Control Theory

SEMESTER : V

DATE OF EXAM : 21/12/2021

DURATION : 45 + 5 minutes

Instructions for Students:

- (1) ANSWER ALL THE QUESTIONS.
- (2) EACH QUESTION CARRIES 1 MARK.
- (3) YOU ARE INSTRUCTED TO INFORM THE INVIGILATOR AFTER SUBMISSION OF THIS FORM IN THE CHAT SECTION.

* Required			
* This form will record your name, please fill your name.			
1			
STUDENT NAME: *			

REGISTRATION NUMBER: *

3

The system matrix of the given differential equation in controllable canonical form is (1 Point)

$$\ddot{y} + 6\ddot{y} + 3\dot{y} + 5y = ii + 2$$

- [0 1 0; 0 0 1; -6 -3 -5]
- [0 1 0; 0 0 1; -5 -3 -6]
- [-7 1 0; -2 0 1; -1 0 0]
- [1 0 0; 0 1 0; -1 -2 -7]

The system matrix in the diagonal canonical form of the given system is (1 Point)

$$\frac{Y(s)}{R(s)} = \frac{10}{(s-1)(s-1)}$$

- [-1 0; 0 -2]
- [0 -1; -2 0]
- [0 1; 2 0]
- [1 0; 0 2]

The input matrix of the given transfer function in observable canonical form is (1 Point)

$$\frac{Y(s)}{R(s)} = \frac{s^2 + 7s + 1}{s^3 + 9s^2 + 26}$$

- [2; 7; 1]
- [172]
- [1; 7; 2]
- [172]

The output matrix of the given transfer function in diagonal canonical form is (1 Point)

- [-10 10]
- [-10; 10]
- [10;-10]
- [1;1]

The input matrix of the given transfer function in controllable canonical form is (1 Point)

$$\frac{Y(s)}{R(s)} = \frac{s^2 + 7s + 1}{s^3 + 9s^2 + 26}$$

- [1; 0; 0]
- [100]
- [0 0 1]
- [0; 0; 1]

The Input matrix in diagonal canonical form of given transfer function is (1 Point)

$$\frac{Y(s)}{R(s)} = \frac{10}{(s-1)(s-1)}$$

- () [1 1]
- $\bigcirc [0 \ 1]$
- () [1;1]
- () [1; 0]

9

Given the system the controllability matrix using Kalman test is (1 Point)

$$\dot{x}(t) = \begin{bmatrix} -1 & 3 \\ 0 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t); y(t) = 0$$

- [0 -2; 1 3]
- [0 3; 1 -2]
- [0 1; 3 -2]
- [1 -2; 0 3]

The system given is (1 Point)

$$\dot{x}(t) = \begin{bmatrix} -1 & 3 \\ 0 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t); y(t) = 0$$

- Not completely state controllable
- One state is not controllable
- Completely state controllable
- Two states are not controllable

11

The dimension of state feedback controller gain matrix for the given system is (1 Point)

$$\dot{x}(t) = \begin{bmatrix} -1 & 3 \\ 0 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t); y(t) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x($$

- O 2X1
- 2X2
- 1X1
- 1X2

For the given system, the state transition matrix using Silvester's interpolation formula is (1 Point)

$$\dot{x}(t) = \begin{bmatrix} 0 & 2 \\ 0 & -3 \end{bmatrix} x(t) + \begin{vmatrix} 1 & 1 \\ 0 & -3 \end{vmatrix}$$

- [1 0;-0.67(e^-3t+1) 0]
- [0 e^-3t; 1 -0.67(e^-3t+1]
- [1 -0.67(e^-3t+1); 0 e^-3t]
- () [0 1; 1 -0.67(e^-3t+1)]

13

The given LTI system is (1 Point)

$$\dot{x}(t) = \begin{bmatrix} 0 & 2 \\ 0 & -3 \end{bmatrix} x(t) + \begin{vmatrix} 1 & 1 \\ 0 & -3 \end{vmatrix}$$

- Unstable
- Stable
- Marginally Stable
- Can not determine

If VR(t) is the output of the of the RL circuit, the state equation of the circuit is (1 Point)

- xdot=VL-(RL)x
- xdot=V/L-(R/L) x
- xdot=Rx
- xdot=Rx+V

$$\dot{x} = -2x + 1u$$
; $y = 2x + 2u$

The transfer function of the given state model is (1 Point)

- (2s+6)/(s+2)
- (s+2)/(2s+6)
- 1/(s+2)
- 1/(2s+6)

16

The direct transmission matrix in the given transfer function is (1 Point)

Given the system matrix A, the Vandermonde matrix is given as (1 Point)

- P=[0 0 1; -1 -2 -3; 1 0 0]
- P=[0 1 0; 0 0 1; -1 -2 -3]
- [1 1 1; -1 -2 -3; 1 4 9]
- [1 1 1; 1 4 9; -1 -2 -3]

The phase portrait of a tunnel diode is shown in the below figure, where the equilibrium points are marked as Q1, Q2, Q3. The equilibrium point Q2 is a

- Stable focus
- Unstable focus
- Saddle point
- Stable Node

The phase portrait of a tunnel diode is shown in the below figure, where the equilibrium points are marked as Q1, Q2, Q3. The type of the equilibrium point Q3 is _____.

- Stable focus
- Unstable Node
- Saddle point
- Stable Node

For the nonlinear system represented by the state equation given below, the number of equilibrium points are _____.

$$\dot{x}_1 = x_1 + x_1 x_2, \ \dot{x}_2 = -x_2 + x_2^2 + x_1 x_2 - x_1^3$$

- None of the above

For the nonlinear system represented by the state equation given below, the type of the equilibrium point (1, -1) is _____. (1 Point)

$$\dot{x}_1 = x_1 + x_1 x_2, \ \dot{x}_2 = -x_2 + x_2^2 + x_1 x_2 - x_1^3$$

- Stable focus
- Unstable focus
- Stable node
- Unstable node

Which of the following is not a properties of nonlinear dynamic systems? (1 Point)

\bigcirc	Finite escape time
\bigcirc	Commutativity does not apply
\bigcirc	Isolated closed curves
\bigcirc	Unique equilibrium point

There is ______ exist for the following nonlinear system.

$$\dot{x}_1 = -x_1 + 2x_1x_2^2 + g(x_2)$$
; $\dot{x}_2 = x_2 + 2x_1^2x_2 + h($

- no chaos
- no jump response
- no limit cycle
- no singular point

Α	nonlinear system produces an output, W as the cube of its input X . ssume the input to be a sinusoidal signal and nonlinear output has an odd unction characteristic. The term a1 in the output W is (1 Point)
\bigcirc	0
\cup	
\bigcirc	3A^3/4
\bigcirc	3A^2/4
\bigcirc	1
í	25
Α	nonlinear system produces an output, W as the cube of its input X . ssume the input to be a sinusoidal signal and nonlinear output has an odd unction characteristic. The term b1 in the output W is (1 Point)
\bigcirc	2
	3A^3/4
	3A^2/4
\bigcirc	3A^2

A nonlinear system produces an output, W as the cube of its input X . Assume the input to be a sinusoidal signal and nonlinear output has an odd function characteristic. The describing function for the nonlinear component can be obtained as (1 Point)
3A^3/4
3A^2/4
AA^3/3
For nonlinearities which are characterized as single valued function, <i>N</i> is and therefore the plot of1/N will always lies on the real axis. (1 Point)
Imaginary
Real
Odd
Symmetric

Which of the following parameters of the limit cycle cannot be used to discriminate between acceptable and dangerous oscillations? (1 Point)

\bigcirc	Oscillation frequency
\bigcirc	Phase shift in oscillation
\bigcirc	Oscillation magnitude
\bigcirc	Stability

Analyze the given figure and select the TRUE statement for the given scenario.

- Point B is not a limit cycle
- Point A and B are stable limit cycle
- Point B" is unstable system
- Point A' is unstable system

For the following dynamical system, what is the value of the constant **a** such that the equilibrium point is globally asymptotically stable. (1 Point)

$$\begin{array}{rcl} \dot{x}_1 & = & -x_1 + 4x_2 \\ \dot{x}_2 & = & -x_1 - x_2^3. \end{array} \qquad V = x_1^2 + ax_2^2.$$

Which of the following statement is not correct if the linearized system is marginally stable? (1 Point)

\bigcirc	Linearization could not conclude about the stability
\bigcirc	Equilibrium point may be asymptotically stable for the nonlinear system
\bigcirc	All the equilibrium point may be marginally stable for the nonlinear system
	Equilibrium point may be unstable for the nonlinear system

The sign definiteness of the Lyapunov function given below is ______. (1 Point)

$$V(x) = x_1^2 + x_2^2 + x_3^3 - x_1 x_2 + x_2 x_3 - x_1 x_3$$

Nagativa	dafinita
Negative	demine

- Positive definite
- Positive semi definite
- Negative semi definite

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms