MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent institution of MAHE, Manipal)

V SEMESTER B. TECH (AERONAUTICAL ENGINEERING) END-SEMESTER EXAMINATION, DEC., 2021 COURSE: COMPUTATIONAL FLUID DYNAMICS (AAE 4075)

PART-A

REVISED CREDIT SYSTEM

Duration: 50 Mins Date: 27/12/2021 MAX. MARKS: 30

Note: All questions are compulsory and each question carry 1 mark.

Q1.	Choose the correct statement
	1. The non-conservation form of governing equations can be obtained by using
	integral approach
	2. The non-conservation form of governing equations can be obtained by using
	differential approach
	3. The non-conservation form of governing equations can be obtained either
	by using integral approach or differential approach
	4. None of above
Q2.	In approach, the region under study is large in size.
	1. Finite control volume
	2. Infinitesimal fluid element
	3. molecular
	4. all above
Q3.	For steady subsonic flow over a wing model, which of the following physical
	principle(s) will be applicable?
	1. Continuity equation and energy equation
	2. Continuity equation and momentum equation
	3. Only the continuity equation
	4. Continuity equation, momentum equation and energy equation
Q4.	Uniform flow of air takes place over a flat plate with velocity, $V = 5x^2 ti$.
	Velocity along the x-direction is 3 m/s. The total acceleration at $x = 2$ m and t
	$= 5s \text{ is } \ m/s^2.$
	1. 42
	2. 320
	3.12
	4. 20
Q5.	For supersonic flow, the following partial differential equation will be

	$(1 - M_{\infty}^2)\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$
	1. Hyperbolic
	2. elliptic
	3. parabolic
	4. quadratic
Q6.	Choose the wrong statement.
	1. Elliptic equation requires boundary conditions over the entire domain.
	2. Elliptic equations can be solved by using marching technique
	3. The governing equations for steady supersonic inviscid flows follow
	hyperbolic nature
	4. The governing equations for unsteady heat transfer by conduction through
	a metallic plate follows parabolic nature.
Q7.	$T + \frac{dT}{dx}$ is boundary condition
	1. Neumann
	2. Dirichlet
	3. combination of Neumann and Dirichlet
	4. adiabatic wall
Q8.	Consider the initial boundary value problem
	$\frac{\partial u}{\partial u} = \alpha \frac{\partial^2 u}{\partial u}$
	$\partial t = \partial x^2$
	where, u is non-dimensional temperature, α is constant and t > 0.
	The initial conditions are $u(x,0) = e^{x^2}$ for $0 < x < 1$ and
	boundary conditions are $u(0, t) = 1$, $u(1, t) = 2.718$ for all time, $t \ge 0$
	Use, $r = \frac{\alpha t}{(\Delta x)^2} = 1$ and $\Delta x = 1/4$
	The non-dimensional temperature at zero time level and second-last grid is
	1 1 659
	2 3 343
	3 2 785
	4. 1.755
09.	Consider the initial boundary value problem
•	
	$\frac{\partial u}{\partial u} - \alpha \frac{\partial^2 u}{\partial u}$
	$\partial t = u \partial x^2$
	where, u is non-dimensional temperature, α is constant and t > 0.
	.2
	The initial conditions are $u(x,0) = e^{x^2}$ for $0 < x < 1$ and

	boundary conditions are $u(0, t) = 1$, $u(1, t) = 2.718$ for all time, $t \ge 0$
	at
	Use, $r = \frac{\alpha c}{(\Delta x)^2} = 1$ and $\Delta x = 1/4$
	The non-dimensional temperature at first time level and second grid is
	1. 1.6
	2. 1.2
	3. 2.1
- 1 0	4. 2.4
Q10.	Consider the initial boundary value problem
	$\partial u = \partial^2 u$
	$\frac{\partial t}{\partial t} = \alpha \frac{\partial x^2}{\partial x^2}$
	where, u is non-dimensional temperature, α is constant and t > 0.
	The initial conditions are $y(x, 0) = a^{\chi^2}$ for $0 < x < 1$ and
	boundary conditions are $u(0, t) = 1$ $u(1, t) = 2.718$ for all time $t > 0$
	boundary conditions are $u(0, t) = 1$, $u(1, t) = 2.710$ for an time, $t \ge 0$
	Use, $r = \frac{\alpha t}{(\Delta x)^2} = 1$ and $\Delta x = 1/4$
	The non-dimensional temperature at first time level and third grid is
	1. 1.519
	2. 2.846
	3. 1.935
	4. 2.694
Q11.	Consider the initial boundary value problem
	$\partial u = \partial^2 u$
	$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$
	$\partial t = \partial x^2$
	where, u is non-dimensional temperature, α is constant and t > 0.
	The initial conditions are $u(x 0) = e^{x^2}$ for $0 < x < 1$ and
	boundary conditions are $u(0, t) = 1$, $u(1, t) = 2.718$ for all time, $t \ge 0$
	Use, $r = \frac{\alpha t}{(\Delta x)^2} = 1$ and $\Delta x = 1/4$
	The non-dimensional temperature at first time level and fourth grid is
	1. 5.264
	2. 2.675
	3. 4.378
012	4. 2.059
Q12.	Anemating-Direction-implicit method is useful to solve problems based on
	1 steady one dimensional heat conduction
	2. steady two dimensional heat conduction

	3. unsteady two dimensional heat conduction
	4. unsteady one dimensional heat conduction
Q13.	The computation time per time step for implicit scheme is the explicit
	scheme.
	1. smaller than
	2. higher than
	3. same as
	4. none of above
Q14.	Thomas algorithm is preferred for solving large size matrices because
	1. it gives accurate solution
	2. it reduces the required number of manipulations
	3. programming is easy
	4. none of above
Q15.	Following equation is in nature.
	$x^3 + 2xy + 5x^2y^3 = 8$
	1. Implicit
	2. explicit
	3. quadratic
	4. none of above
Q16.	One-dimensional steady state heat conduction takes place through a wall of
	thermal conductivity 70 W/m°C. Consider three nodes along the width of the
	wall with equal spacing of 0.1 m. The temperature at the extreme left node is
	maintained at 80°C, whereas, extreme right node is subjected to a heat flux of
	3500 W/m^2 . The temperature at the second node is <u>°C</u> .
	1. 88
	2. 85
	3.90
	4. 93
Q17.	One-dimensional steady state heat conduction takes place through a wall of
	thermal conductivity 70 W/m°C. Consider three nodes along the width of the
	wall with equal spacing of 0.1 m. The temperature at the extreme left node is
	maintained at 80°C, whereas, extreme right node is subjected to a heat flux of
	3500 W/m^2 . The temperature at the extreme right node is0°C.
	1.96
	2.100
	3.90
010	4.104
Q18.	is an example of elliptic equation
	1. unsteady and subsonic flow
	2. unsteady and compressible flow
	3. steady and subsonic flow

	4. steady and supersonic flow
Q19.	If the value of Cell Peclet number is greater than ± 5, CDS method does not satisfy
	the property of discretization schemes
	a) Conservativeness
	b) Boundedness
	b) Boundedness
	d) Transportiveness
	a) Truncation error
Q20.	Cell Peclet Number (Pe), in the case of Pure Diffusion is
	a) Infinity
	b) Equal to Zero
	c) More than +2
	d) Less than –2
Q21.	'Checker board pressure field' can be solved using
	a) Course grid
	b) Fine grid
	c) Collocated grid
	d) Staggered grid
Q22.	Order of Truncation error in the case of UDS method is
	a) Zero Order
	b) First order
	c) Second order
	d) Third order
Q23.	QUICK method uses (case Fe > 0, Fw > 0)
	a) Two bracketing nodes and one upstream node
	b) Two bracketing nodes and one downstream node
	c) Two upstream nodes and two downstream nodes
	d) None of the above
Q24.	In case of boundary control volumes, S _p is
	a) Always equal to Zero
	b) Always more than Zero
	c) Always Less than Zero
	d) None of the above
Q25.	In case of UDS method when u_e < 0, u_w < 0 flow variable Ø at the face is evaluated
	as
	a) $\phi_e = \phi_P$ and $\phi_w = \phi_E$
	b) $\phi_{a} = \phi_{E}$ and $\phi_{u} = \phi_{E}$
	$a) \phi = \phi and \phi = \phi$
	$\psi_e - \psi_W \operatorname{and} \psi_W - \psi_E$
	d) $\varphi_e = \varphi_W$ and $\varphi_W = \varphi_E$

Q26.	In case of SIMPLE algorithm,
	a) Only pressure correction equation has to be under relaxed
	b) Only velocity correction equation over relaxed
	c) Both pressure and velocity correction equation has to be over relaxed
	d) Both pressure and velocity correction equation has to be under
	relaxed
Q27.	In case of SIMPLE algorithm, for a converged solution
	a) Pressure correction will be zero
	b) Velocity correction will be zero
	c) Both pressure and velocity corrections will be zero
	d) Both pressure and velocity corrections will not be zero
Q28.	Continuity equation is represented as
	a) $F_{e} - F_{w} = 0$
	b) $D_e - D_w = 0$
	c) $D_e - F_w = 0$
	d) $D_w - F_e = 0$
Q29.	Error due to Numerical False diffusion in case of UDS method
	a) Increases with finer grid
	b) Decreases with courser grid
	c) Decreases with finer grid
	d) Reduces to zero with finer grid
Q30.	method is conditionally stable under certain modest value of Peclet
	number (e.g Pe = 8/3)
	a) CDS
	b) UDS
	c) QUICK
	d) None of the above

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent institution of MAHE, Manipal)

VII SEMESTER B. TECH (AERONAUTICAL ENGINEERING) END-SEMESTER EXAMINATION, DEC., 2021 COURSE: COMPUTATIONAL FLUID DYNAMICS (AAE 4075)

PART-B

REVISED CREDIT SYSTEM

Stepwise answers carry marks

Duration: 75 Mins (+10 Mins uploading Time) Date: 27/12/2021

MAX. MARKS: 20

Note:

- All questions are compulsory
- Draw a neat diagram wherever necessary
- Q1. A slab is subjected to the combined effect of convection and heat flux at [2M] it's left face. Considering internal heat generation within the slab, write the energy balance equation for the extreme left node and it's adjacent node.
- Q2. Discretize the following equation using the forward difference method [3M] and obtain the general form of it. Consider equal grid spacing of 0.1 along the x and y directions.

$$5\frac{\partial^2 u}{\partial x^2} + 3\frac{\partial^2 u}{\partial y^2} + 7\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + 4 = 0$$

Q3. Consider a L-shaped metallic block of thermal conductivity, 10 W/m°C [5M] as shown in the following figure. The temperature at nodes 6, 7 and 8 is same as 100°C and at nodes 4 and 5 it is 70°C and 50°C, respectively. The left face of the block (i.e. nodes 1, 3 and 6) is insulated. The faces 1-2, 2-4 and 4-5 are subjected to a heat transfer coefficient of 125 W/m°C at ambient temperature, T_{∞} of 30°C. There is an internal heat generation of 20,000 W/m³ within the block. Considering an equal grid spacing of 2 cm along x and y directions, determine the temperature at nodes, 1, 2 and 3.

- **Q5.** With a suitable example explain Numerical False Diffusion. [3M]
- Q6.

[5M]

A property ϕ is transported by means of convection and diffusion through the one dimensional domain sketched below. The governing equation is

$$\frac{d}{dx}(\rho u\phi) = \frac{d}{dx}\left(\Gamma\frac{d\phi}{dx}\right)$$

The boundary conditions are $\phi_0 = 1.2$ at x = 0 and $\phi_L = 0$ at x = L. Using five equally spaced cells and the UDS calculate the distribution of ϕ when u = 0.2 m/s. Consider L = 0.5m, $\Gamma = 0.1$ and $\rho = 1.5$, $\phi = 1$, w = 0, $\phi = 0$, w = 0, $\phi = 0$, $\phi =$