

(A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH. (INFORMATION TECHNOLOGY | COMPUTER AND COMMUNICATION TECHNOLOGY)

END SEMESTER EXAMINATIONS, DECEMBER 2021 – JANUARY 2022 SUBJECT: PATTERN RECOGNITION [ICT 4053]

REVISED CREDIT SYSTEM (17/12/2021)

TIME: 75 MINS.

MAX. MARKS: 20

Instructions to candidates

• Answer **ALL** questions.

• Missing data, if any, may be suitably assumed.

Q. No.	Questions	M *	C*	A *	B *
1A.	Given the following data elements for 2 class problem {(7.1, 4.2), (-1.4,-4.3), (4.5,0), (6.3, 1.6), (4.2, 1.9), (1.4, -3.2), (2.4, -4), (2.5, -6.1), (8.4, 3.7), (4.1, -2.2) } belongs to class omega1 { (-3,-2.9), (0.5,8.7), (2.9, 2.1), (-0.1,5.2), (-4,2.2), (-1.3, 3.7), (-3.4,6.2), (-4.1, 3.4), (-5.1, 1.6), (1.9,5.1) } belongs to class omega2 If W^{T}_{0} = [-5, 0.9, 1] and η =0.3, Calculate the weight vector at the end of second iteration using perceptron criteria	5	1	2	4
1B.	Given three classes and discriminant functions as follows: $G_1(X)=X_1 - 2X_2 - 15$ $G_2(X)=3X_1 - X_2 - 15$ $G_3(X) = X_1 + 4X_2 - 15$ Locate the class for data point (0,3)	3	1	2	3
1C.	Suggest a solution when exhaustive search for clustering becomes completely infeasible?	2	1	1	3
2A.	Explain the Hidden Markov Model and determine the state transition	5	3	2	5
	probability of the spoken word "later" and "alter", i.e. $P(\text{later}/\theta)$ and $P(\text{alter}/\theta)$				
2B.	Explain the working of K Nearest Neighbor algorithm with an example and justify its application.	3	2	3	3
2C.	Illustrate an example of reducing a 2D-graph to a 1D-graph, so as to maximize the separability of two categories in Multiple Linear Discriminant analysis.	2	1	1	3

M*--Marks, C*--CLO, A*--AHEP LO, B* Blooms Taxonomy Level