Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKE UP EXAMINATIONS, FEB 2022

SUBJECT: PE - III: INDUSTRIAL WASTEWATER ENGINEERING

[CHE 4057] REVISED CREDIT SYSTEM

Date: 24/02/2022 Time: 2 – 5 PM MAX. MARKS: 20

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.

	Determine the size of high rate trickling filter for the following data:				
1A	Flow rate = 4.5×10^6 lt/day, Recirculation ratio = 1.5				
	BOD_5 of raw effluent = 250 mg/lt				
	BOD removal in PST = 30%	(4 marks)			
	Find effluent BOD desired				
	A conventional activated sludge process plant is in operation with a θ_c of 10 days.				
1B.	Reactor volume = 8000 m^3 , MLSS = 3000 mg/l .				
	Determine				
	(i)Sludge production rate	(4 marks)			
	(ii)Sludge wastage flow rate when wasting from the reactor				
	(iii)Sludge wastage flow rate when wasting from the recycle line.				
	Assume concentration of suspended solids in the recycle line as 10000 mg/l				
	Describe the following terms along-with their significance				
1C.	(i) F/M ratio				
	(ii) Volumetric Loading Rate				
	(iii) Hydraulic Loading Rate				
	(iv)Recirculation Ratio				
2A.	What is sloughing?	(2 marks)			
	A single source of BOD causes an oxygen-sag curve with a minimum downstream				
2B.	DO equal to 6.0 mg/l. If the BOD of the waste is doubled (without increasing the				
	waste flow rate), what would be the new minimum downstream DO? In both cases				
	assume that the initial oxygen deficit just below the source is zero and the saturated				
	value of DO is 10.0 mg/l. Note that when the initial deficit is zero, the deficit at any	(4 marks)			
	•				
	point is proportional to the initial BOD.				
2C.	Design a facultative aerated lagoon to serve 40000 people. Wastewater flow is				
	7200 m ³ /day, Raw BOD ₅ = 50 g/person-day or 277 mg/lt. Final BOD ₅				
	concentration is not to exceed 40 mg/lt in winter season. Average ambient air	(4 marks)			
	temperature is 34 deg C and in winter it is 18 deg C.Assume ka at 20 deg C as 0.7				
	day-1, design temp is 26 deg C				