

## VII SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2021-JANUARY 2022

**SUBJECT: Digital Design Verification (ECE - 4062)** 

TIME: 75 min MAX. MARKS: 20

## **Instructions to candidates**

- Answer **ALL** questions.
- Missing data may be suitably assumed.

|     | For the state machine given in <b>TABLE Q1A</b> , discover the equivalence partitions and write corresponding reduced state machine. PS, NS, X, and Z represent present state, next state, input, and output respectively. |        |             |                             |                                                                                           |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|-----------------------------|-------------------------------------------------------------------------------------------|---|
| 1A. | TABLE Q1A                                                                                                                                                                                                                  |        |             |                             |                                                                                           |   |
|     |                                                                                                                                                                                                                            | PS     | PS NS,      |                             |                                                                                           |   |
|     |                                                                                                                                                                                                                            | ٨      | X=0         | X=1                         |                                                                                           | 4 |
|     |                                                                                                                                                                                                                            | A<br>B | B,0<br>E,0  | E,0<br>D,0                  |                                                                                           |   |
|     |                                                                                                                                                                                                                            | C      | D,1         | A,0                         |                                                                                           |   |
|     |                                                                                                                                                                                                                            | D      | C,1         | E,0                         |                                                                                           |   |
|     |                                                                                                                                                                                                                            | E      | B,0         | D,0                         |                                                                                           |   |
|     | equivalence checking.                                                                                                                                                                                                      | um     | Hal Add Add | Sum X f er Carry Sum Y f er | ent to 1-bit full adder using  X=Sum of full adder  X=Carry of full adder  utput not used | 3 |
|     | Fig Q1 B                                                                                                                                                                                                                   |        |             |                             |                                                                                           |   |
|     | Explain the challenges involved in verifying a 64-bit counter. Assume that simulation tool used for verification can verify 1000000 transition per second.                                                                 |        |             |                             |                                                                                           | 3 |
| 2A. | Write a System Verilog class for generating the random input values for 4 to 1 multiplexer and display the result in the given form  Generator d=1010, s=0 f=x                                                             |        |             |                             |                                                                                           |   |
|     | Note: values of inputs d and s may be different due to randomization                                                                                                                                                       |        |             |                             |                                                                                           |   |

ECE -4062 Page 1 of 2

| 2B. | Write a SystemVerilog class to communicate the values of d and s from generator class (Q.2A) to the driver class. | 3 |
|-----|-------------------------------------------------------------------------------------------------------------------|---|
| 2C. | Discuss the corner case with an example.                                                                          | 3 |

ECE -4062 Page 2 of 2