Reg. No.					
1108.1101					

SEVENTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION DECEMBER 2021-JANUARY 2022

SUBJECT: INFORMATION THEORY AND CODING (ECE - 4075)

TIME: 85 MINUTES MAX. MARKS: 20

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.

Q. No.	PART B								
1A.	Construct a minimum variance Huffman code for the source shown in the following								
	table using the code alphabet $X = \{0, 1, 2, 3\}$.								
	S s1 s2 s3 s4 s5 s6 s7 s8 s9 s10								
	P(s _i) 0.20 0.18 0.12 0.10 0.10 0.08 0.06 0.06 0.06 0.04								
	Find efficiency and redundancy of this code.								
1B.	Let S_0 be the third extension of a zero-memory binary source with the probability of								
	a 0 equal to p. Another source observes the output of S_0 and emits either a 0, 1, 2 or								
	3 according to whether the output of S_0 had 0,1, 2, 3 zeros. Determine $H(S_0)$ and								
	H(S).								
1C.	Determine the Mutual information of a Binary Symmetric Channel (with the error								
	probability p) if it is extended to 2 nd order. Compare this mutual information with that								
	of original channel.								
	(4+3+3)								
2A.	Decode the following binary sequence using Adaptive Huffman coding Procedure for a								
	source with 26 letter alphabet A to Z : 10010000000010001111000110110 .								
2B.	Explain decoding procedure and update procedure of Adaptive Huffman coding.								
2C	Justify two real time scenarios for the additivity of Mutual information.								
	(5+3+2)								

ECE -4075 Page 1 of 2