END SEMESTER EXAMINATIONS (DECEMBER 2021/JANUARY 2022) QUESTION PAPER - PART A

COURSE CODE : ICE-4068 **COURSE NAME** : Robotics **SEMESTER** : VII DATE OF EXAM : 22/12/2021 DURATION : 45 + 5 minutes **Instructions for Students:** (1) ANSWER ALL THE QUESTIONS. (2) EACH QUESTION CARRIES 1 MARK. (3) YOU ARE INSTRUCTED TO INFORM THE INVIGILATOR AFTER SUBMISSION OF THIS FORM IN THE CHAT SECTION. * Required * This form will record your name, please fill your name. 1. STUDENT NAME: *

The value must be a number

2. REGISTRATION NUMBER: *

 According to the D-H method, if the first and last joints are revolute, then which of the following statements are true: (1 Point)
Only the link length of the end-effector=0
Only the link length of the base=0
Both the link length of the base and end-effector are not equal to 0
Both the link length of the base and end-effector=0
4. The axis of rotation for the following transformation matrix is:
R=[0.75 0.6124 0.25;-0.6124 0.5 0.6124;0.25 -0.6124 0.75] (1 Point)
○ u=[0.5 0 -0.5]
○ u=[-0.5 0 0.5]
∪ u=[0.7071 0 -0.7071]
∪ u=[-0.7071 0 0.7071]
5. Integral control is used (1 Point)
to improve the closed-loop stability of a system
to eliminate the steady state error and make the system follow the set point at steady state conditions
o to provide bias
control uncertainties

6. Singular configurations happen when: (1 Point)
Two axes of prismatic joints become identical
Two axes of prismatic joints become parallel
Two axes of prismatic joints become perpendicular
Two axes of prismatic joints become orthogonal
7. Feedback Linearization or Computed Torque Control Technique is (1 Point)
omore suitable for low DOF robots
of for controlling uncertain or time-varying models
O linear control technique
omodel-based control method
8. The angle of rotation for the following transformation matrix is:
R=[0.75 0.6124 0.25;-0.6124 0.5 0.6124;0.25 -0.6124 0.75] (1 Point)
O 75
○ 60
O 45

Every kinematic information must be calculated in the:(1 Point)
○ World frame
O Body frame
Base frame
End-effector frame
10. To calculate the path of motion for the end-effector: (1 Point)
the joint variables as functions of time, and the forward kinematics of manipulators are required
the link variables as functions of time, and the inverse kinematics of manipulators are required
the joint variables as functions of time, and the inverse kinematics of manipulators are required
the link variables as functions of time, and the forward kinematics of manipulators are required
11. A rotational path is defined by (1 Point)
angle-axis rotation matrix
transformation matrix
O direction cosine matrix
quaternions

12. The degree of freedom of a manipulator is determined by the (1 Point)
Number of axes of the manipulator
Number of links of a manipulator
Number of joints of a manipulator
Number of frames of a manipulator
13. A variable sequence robot comes under the following class: (1 Point)
○ 2
14. Consider an inertia matrix given by: [3 2 2; 2 2 0; 2 0 4], the direction of principal axis xi is: (1 Point)
O 69.3 deg, 90 deg
45 deg, 69.3 deg, 45 deg
90 deg, 90 deg, 69.3 deg
45 deg, 45 deg, 69.3 deg

15. A point sequence path with eight conditions for the sequence of points has (1 Point)
7 coefficients
○ 6 coefficients
○ 8 coefficients
9 coefficients
16. When the proximal joint of link (i) is revolute and the distal joint is either revolute or prismatic, and the joint axes at two ends are perpendicular, then: (1 Point)
☐ Link twist=90 deg
O Joint distance is varying
O Joint angle is constant
◯ Link length=0
17. Conservative force is derivable from (1 Point)
C Kinetic energy
O Potential energy
○ Moment
○ Torque

18. The off-diagonal elements of a moment of inertia matrix are called: (1 Point)
O Principal moments of inertia
O Polar moments of inertia
Oeviation moments of inertia
Products of inertia
19. A mass m = 4kg has an initial kinetic energy K = 16J. The mass is under a constant force F=1i+0j+0k and moves from X(0)=1 to X(tf)=25 m at a terminal time tf. What is the kinetic energy of the mass? (1 Point)
○ 16 J
○ 30 J
○ 20 J
○ 40 J
20. The configuration of an articulated arm is (1 Point)
\bigcirc R $^{\perp}$ R $^{\perp}$ R
O R −R [⊥] R
O R R → P

(1 Point)
the global rate of change of angular momentum is proportional to the global applied force
the global rate of change of linear momentum is proportional to the global applied moment
the global rate of change of linear momentum is proportional to the global applied force
the global rate of change of angular momentum is proportional to the global applied moment
22. The distance between zi-1 and zi axes along the xi-axis is: (1 Point)
O Joint distance
C Link length
O Joint angle
C Link twist
23. Consider an inertia matrix given by: [3 2 2; 2 2 0; 2 0 4], the principal moments of inertia are: (1 Point)
O 6,3,0
3,0,6
O 6,0,3
3,6,0

24.	(1 Point)
	Newton-Euler's equation of motion
	Newton's first law of motion
	Newton's second law of motion
	Newton's third law of motion
25.	The moment of momentum is also called (1 Point)
	O linear momentum
	angular momentum
	translational momentum
	○ torque
26.	Path planning includes (1 Point)
	O Defining a geometric curve for the end-effector between two points
	O Defining a geometric curve for the base between two points
	O Defining a coordinate between two given values
	O Defining a translational motion between two orientations

27. Increasing the control command when the actual variable is smaller than the desired value and decreasing the control command when the actual variable is larger than the desired value is: (1 Point)
○ feedback control
○ feed-forward control
Open loop control
onn-linear control
28. If a body point at [-1;0; 2; 1] is translated to [0; 10; -5; 1], the corresponding transformation matrix is: (1 Point)
[1 0 0 -1;0 1 0 10;0 0 1 -7;0 0 0 1]
[1 0 0 1;0 1 0 10;0 0 -1 -5;0 0 0 1]
[1 0 0 1;0 1 0 10;0 0 1 -5;0 0 0 1]
[1 0 0 1;0 1 0 10;0 0 1 -7;0 0 0 1]
29. A mass $m = 4kg$ has an initial kinetic energy $K = 16J$. The mass is under a constant force $F=1i+0j+0k$ and moves from $X(0)=1$ to $X(tf)=25$ m at a terminal time tf. What is the terminal speed of the mass? (1 Point)
1.4142 m/s
○ 4.4721 m/s
2.2361 m/s
3.1623 m/s

30. A mass $m = 4kg$ has an initial kinetic energy $K = 16J$. The mass is under a constant force $F=1i+0j+0k$ and moves from $X(0)=1$ to $X(tf)=25$ m at a terminal time tf. What is the work done by the force during this motion? (1 Point)
○ 22 J
○ 25 J
○ 23 J
○ 24 J
31. Forcing a variable to have specific position, velocity as initial and final conditions leads to a polynomial path with degree (1 Point)
○ 4
○ 5
○ 2
○ 3
32. A link Jacobian transforms (1 Point)
the instantaneous joint angles into the instantaneous link's translational and angular velocities.
the instantaneous link coordinate velocities into the instantaneous link's translational and angular velocities.
the instantaneous joint coordinate velocities into the instantaneous link's translational and angular velocities.
the instantaneous link twists into the instantaneous link's translational and angular velocities.

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms