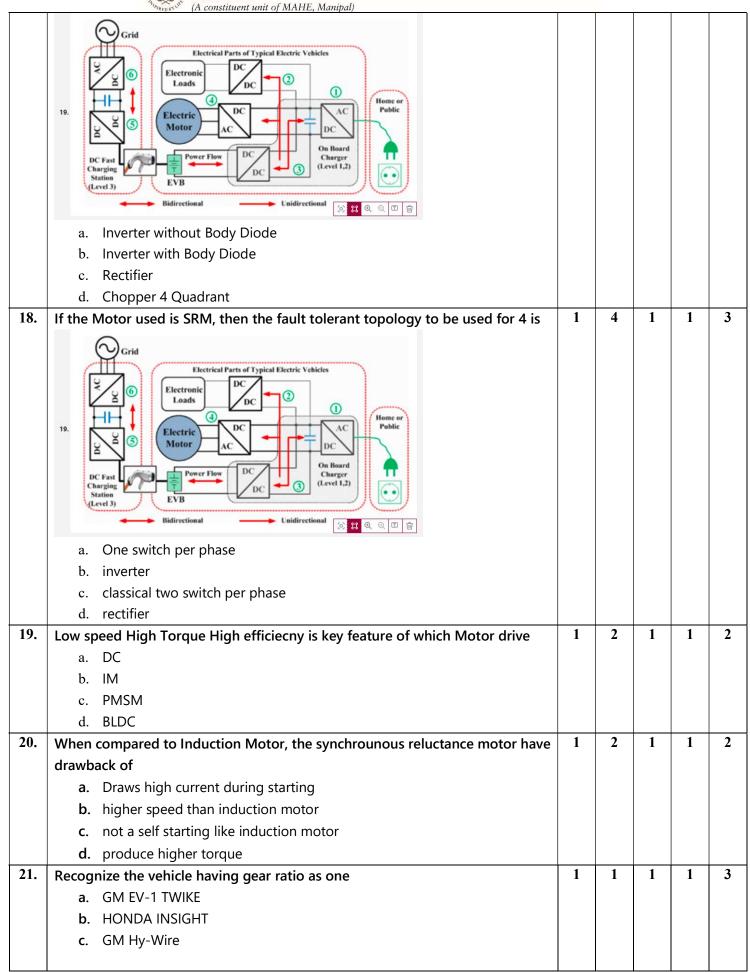
DEPARTMENT OF MECHATRONICS VII SEMESTER B.TECH. MECHATRONICS

END SEMESTER EXAMINATIONS, DEC. 2021

SUBJECT: MODELING OF ELECTRIC VEHICLES [MTE 4085]

Date: 24/12/2021 MAX. MARKS: 50

Instructions to Candidates:


- Answer ALL the questions.
- Data did not provide any, may be assumed suitably.

Q. No	PART – A $(30 \times 1 = 30 \text{ Marks})$ 50 Mins.	M	СО	PO	LO	BL
1.	Ideal teardrop drag coefficient is	1	1	1	1	2
	a. 1.2					
	b39					
	c19					
	d04					
2.	3ph, 400V, 50Hz, 4 pole Induction Motor is used for Electric Vehicle	1	2	1	1	3
	Application. The motor is controlled for constant power region using scalar					
	control. if the motor is having voltage of 400V applied and is running at					
	synchronous speed of 6000 RPM. Estimate the frequency of the running					
	condition.					
	a. 12.5Hz					
	b. 25Hz					
	c . 200Hz					
	d . 50Hz					
3.	Mahindra KUV 100 vehicle has the engine characteristics as depicted in Figure	1	2	1	1	3
	and has the gearbox specifications given in Table. Identify the maximum cruising plant speed of the vehicle					
	Engine Power and Torque Curves					
	280					
	240 Power					
	Torque (VIV) 220 Torque 60 80 90 90 90 90 90 90 90 90 90 90 90 90 90					
	180 60 8W					
	40					
	120 20					
	80					
	1000 2000 3000 4000 5000 6000 Speed (RPM)					
	1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear					
	Gear ratio 3.909:1 2.100:1 1.481:1 1.094:1 0.838:1					
	a. 3500RPM					

	(A constituent unit of MAHE, Manipal)	1		ı	1	
	b. 5000RPM					
	c. 6000RPM					
	d. 1000RPM					
4.	Mahindra KUV 100 vehicle has the engine characteristics as depicted in Figure	1	2	1	1	3
	and has the gearbox specifications given in Table.					
	Estimate the power at of the vehicle maximum torque when vehicle is in 3rd					
	gear					
	Engine Power and Torque Curves					
	120					
	280					
	240 Power					
	Torque (KW) 80 80 80 60 60 60 60 60 60 60 60 60 60 60 60 60					
	60 oowe					
	180					
	120					
	80					
	1000 2000 3000 4000 5000 6000					
	Speed (RPM)					
	1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear					
	Gear ratio 3.909:1 2.100:1 1.481:1 1.094:1 0.838:1					
	a. 84kW					
	b. 110kW					
	c. 74kW					
	d. 56kW					
5.	Mahindra KUV 100 vehicle has the engine characteristics as depicted in Figure	1	2	1	1	3
	and has the gearbox specifications given in Table.					
	Calculate the value of τυ.					
	Engine Power and Torque Curves					
	120					
	280					
	Power 100					
	Torque (WW) 80 80 80 80 80 80 80 80 80 80 80 80 80					
	60 aw					
	40					
	120					
	80					
	1000 2000 3000 4000 5000 6000					
	Speed (RPM)					
	1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear					
	Gear ratio 3.909:1 2.100:1 1.481:1 1.094:1 0.838:1					
	2.205					
	a. 2.395					
	b. 4.8					
	c. 1.2					
	d. 3.5					
6.	Mahindra KUV 100 vehicle has the engine characteristics as depicted in Figure	1	2	1	1	3
	and has the gearbox specifications given in Table.					
	Identify suitable motor that can replace this IC Engine.					

	(A constituent unit of MAHE, Manipal)			1		
	Engine Power and Torque Curves					
	280					
	240 Power 100					
	Torque (NM) 80 80 80 80 80 80 80 80 80 80 80 80 80					
	60 ba					
	180					
	120					
	80					
	1000 2000 3000 4000 5000 6000					
	Speed (RPM)					
	1st Gear 2nd Gear 3rd Gear 4th Gear 5th Gear					
	Gear ratio 3.909:1 2.100:1 1.481:1 1.094:1 0.838:1					
	a. Induction Motor					
	b. Synchronous Motor					
	c. Permanent Magnet Synchronous Motor					
	d. Switched Reluctance Motor					
7.	Identify from the list below which of the motor can be "ideal for EV application"	1	2	1	1	3
	from its Torque-speed characteristics.					
	a. Induction Motor					
	b. DC Series Motor					
	c. PMSM					
	d. Synchronous Motors					
8.	In case of D.C. separately excited, the constant power region for EV is achieved	1	2	1	1	2
	by keeping					
	a. Motor armature voltage and current rated throughout					
	b. Motor armature voltage and field rated throughout					
	c. Motor varying armature voltage and current rated throughout					
	d. Motor armature voltage fixed and field current rated increasing					
9.	Generating Mode in SRM is achieved by	1	2	1	1	2
	a. reversing current in the coil					
	b. positive current					
	c. negative slope of inductance					
	d. doubling the slope of inductance					
10.	Identify the Motor Technology that does not require conventional Inverter	1	2	1	1	3
	a. Induction Motor					
	b. SRM					
	c. PMSM					
	d. BLDC					
11.	Recognize the fourth element of vehicle system that enhances the safety of the	1	3	1	1	3
	vehicle					
	a. Driver					
	b. Environment					
	c. Vehicle					
	d. VDC					

	(A constituent unit of MAHE, Manipal)					
12.	Which of the Motor is effected by back emf	1	2	1	1	2
	a. Induction					
	b. DC Motor					
	c. PMSM					
	d. SRM					
13.	Vector control of PMSM motor is required majorly for providing	1	2	1	1	2
	a. Speed Control					
	b. Torque control					
	c. Current control					
	d. velocity control					
14.	Identify the vehicle that has good COG for Battery Placement for ALL WHEEL	1	1	1	1	3
	drive Vehicle					
	A B					
	C D					
	a. A					
	b. B					
	c. (
15	d. D	1	1	1	1	2
15.	TWIKE Chassis GM EV-1 technology uses	1	1	1	1	2
	a. conventional transmission					
	b. single geared transmission					
	c. In wheel drive					
14	a. None	1	1	1	1	3
16.	Identify the Battery Balancing Technique that is inefficient	1	4	1	1	3
	a. Inductor Based					
	b. Capacitor based					
	c. Transformer Based					
	a. Resistive Based					
17.	Recognize the typology for EV Application: 4	1	4	1	1	3

22.	Identify the system below that requires SYNTHESIS modelling technique	1	1	1	1	3
		•	1	_	1	
	a. Develop a buck converter with specification					
	b. Input: 100V and Output: 200 volt					
	c. Input: 100V, Output: 200 volt, DC_DC Converter Boost					
23.	d. Efficiency of DC_DC Converter Boost with Input: 100V, Output: 200 volt,	1	5	1	1	3
23.	Recognize the recent development of semiconductor devices for Electric	1	3	1	1	3
	vehicles					
	a. IGBT using GaN					
	b. IGBT using Si					
	c. MOSFET with SiC					
2.4	d. MOSFET with GaN		_		-	
24.	The product τυ is smaller indicates	1	1	1	1	2
	a. Increase in constant power region					
	b. increase in gears					
	c. decrease in constant power region					
	d. decrease in gears					
25.	Identify the Materials used for body that requires large Battery system	1	1	1	1	3
	a. Carbon Fibre Reinforced					
	b. Stainless steel					
	c. Alluminium					
	d. Glass Reinforced Plastic					
26.		1	4	1	1	3
20.	Identify the cost effective Battery Balancing Technique a. Resistive	1	7	1	1	3
	c. Switched Capacitived. Switched DC-DC converters					
27.		1	2	1	1	3
27.	Recognize the EV Motor company using SRM	1		1	1	3
	a. Toyoto Pruis					
	b. BMW-i3					
	c. Chloride Lucas					
20	d. Fiat Panda	1	1	1	1	2
28.	Design consideration of any Vehicle Technology is to	1	1	1	1	2
	a. A) Reduce the drag force required					
	b. B) Increase the use of Battery Power drawn					
	c. Both A & B					
	d. None					
29.	Identify the Motor that has more rotor losses	1	2	1	1	3
	a. Induction Motor					
	b. Permanent Magnet Synchronous Motor					
	c. Switched Reluctance Motor					
	d. BLDC					
30.	Identify the Motor that is presently being used for Electric vehicles	1	2	1	1	3
	a. Induction Motor					
	b. PMSM					

	"Make of the (A constituent unit of MAHE, Manipal)	ı		1		
	c. BLDC					ı
	d. DC Motor					ı
PAR	Γ – B (20 MARKS)				75 M	lins.
1A.	Analyze the impact of body chassis with material selection on resistive forces and battery power source for the following vehicles shown in Fig 1Aa, Fig 1Ab and Fig 1Ac.	5	1	1,2	1,2	4
	Fig 1Aa Fig 1Ab					
1B.	Fig 1Ac Compare any two modelling techniques with suitable examples.	2	1	1,2	1,2	4
1C.	Examine the key roles of vehicle dynamic control as fourth element.	3	3	1	1	4
2A.	Inspect the performances of the motor drive technologies for Electric vehicles.	5	2	1,2	1,2	4
	AA LIII DAGAA A MILA MARANA MA	3	2	1,5	1,3	3
2B.	Model the PMSM motor with governing equations and topologies.		_		1,5	