Reg. No.



## I SEMESTER M.TECH. (AUTOMOTIVE ENGINEERING) MAKE-UP EXAMINATIONS, April 2022 SUBJECT: AUTOMOTIVE MATERIALS AND STRUCTURES (AAE 5172) REVISED CREDIT SYSTEM

(18/04/2022)

**Duration: 3 Hours** 

Max. Marks: 50

## Instructions to Candidates:

- ✤ Answer all the questions.
- ✤ Assume missing data if any.

| QN  | Question                                                                                                                                                                                                 | Max<br>marks |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1a) | Determine the Atomic packing factor for Hexagonal Close-packed crystal<br>Structure.<br>Given: c/a = 1.633                                                                                               | (04)         |
| 1b) | Explain the concept of slip plane formation.                                                                                                                                                             | (03)         |
| 1c) | Discuss Strain hardening mechanism with schematic illustration in terms of stress-strain diagram                                                                                                         | (03)         |
| 2a) | Discuss the properties required in selection of cylinder block material.                                                                                                                                 | (02)         |
| 2b) | List the material selection process from all materials selection to final materials of choice. With an example explain the material section process.                                                     | (04)         |
| 2c) | Explain the shape memory effect with the stress-strain-temperature graph.                                                                                                                                | (04)         |
| 3a) | Differentiate and write a brief note dry liners based on 3 basic fits used.                                                                                                                              | (02)         |
| 3b) | Explain the purpose of forming limit diagram? With a strain graph explain the forming limit curve formation.                                                                                             | (04)         |
| 3c) | Construct the Iron-Carbon equilibrium diagram with all the important<br>temperatures and phases involved also describe the 3 important invariant<br>reactions involved                                   | (04)         |
| 4a) | Determine [A], [B] and [D] matrices for $[0   90]$ angle-ply laminate. Each ply has the thickness of 0.125 mm. E <sub>1</sub> = 140 GPa, E <sub>2</sub> = 10 GPa, E <sub>6</sub> = 5 GPa, $v_{12}$ = 0.3 | (05)         |

| 4b) | Evaluate Transverse modulus $E_2$ of a glass/epoxy composite lamina with                     | (02) |
|-----|----------------------------------------------------------------------------------------------|------|
|     | properties $E_f = 15.8$ GPa, $E_m = 3.05$ Gpa, $V_f = 0.55$ , $v_m = 0.36$ using Halpin-Tsai |      |
|     | relationship ( $\xi = 1$ )                                                                   |      |
| 4c) | A glass/epoxy specimen weighing 0.98 gm was burnt and the weight of the                      | (03) |
|     | remaining fibre found to be 0.49 gm. Densities of glassepoxy are 2.4 gm/ml                   |      |
|     | and 1.20 gm/ml, respectively. Determine the density of composites in the                     |      |
|     | absence of voids. The actual density of the composite was measured to be 1.50                |      |
|     | gm/ml, what is the void fraction?                                                            |      |
| 5a) | Deduce the equation for longitudinal strength for fiber-reinforced composite                 | (06) |
|     | lamina.                                                                                      |      |
| 5b) | Mention various hydroforming methods. With a neat sketch explain high                        | (04) |
|     | pressure sheet hydroforming.                                                                 |      |