MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent institution of MAHE, Manipal)

SEMESTER-I, M. TECH (DEFENCE TECHNOLOGY) END-SEMESTER EXAMINATION, FEB./MARCH, 2022 COURSE: Advanced Engineering Mathematics (MAT5164)

Duratio	n: 3 Hrs	Date: 25/02/2022	MAX. MARKS: 50
	All questions are compulsory Draw a neat diagram wherever necessary	Stepwise answers carry r	narks
Q1a.	Define Boundary Value Problem for solving ODE, which one is th	e e	ods [2M]
Q1b.	(i) Mention the factors to decide(ii) What policy India should adofrom Pakistan?	•••	[3M] tacks
Q1c.	Given $\frac{dy}{dx} - \sqrt{xy} = 2$, $y(1) = 1$; Find the value of $y(2)$ in steps of	f 0.1 using Euler's modified meth	[5M] od.
Q2a.	If <i>u</i> is a function of <i>x</i> and <i>y</i> , write formula for $\frac{\partial u}{\partial x}$.	e the central difference approxim	ation [2M]
Q2b.	If $P_n(x)$ is a Legendre polynomia $P_n(\alpha) = 0$. Show that $P_{n-1}(\alpha)$ and	•	[3M]
Q2c.	Given $u(0,t) = 0$, and	$= 5u_{xx}$ u(5,t) = 60, $0x, 0 \le x \le 3$ $60, 3 \le x \le 5$	[5M]
Q3a.	Define half range Fourier series.		[2M]

- **Q3b.** The average number of accidents at a level crossing every year is 5. **[3M]** Calculate the probability that there are exactly 3 accidents there this year.
- Q3c. A company has installed 10,000 electric bulbs in a metro. These bulbs [5M] have an average life of 1000 burning hours with a standard deviation 200 hours. Assuming normality what number of bulbs might fail
 - (i) In the first 800 burning hours?
 - (ii) Between 800 and 1200 burning hours?
 - After what period of burning hours would you expect that
 - (iii)10% of the bulbs would fail?
 - (iv)10% of the bulbs would survive?
- Q4a. Write few lines about a topic which you liked most in this subject. [2M]
- Q4b. Find the largest eigen value and corresponding eigen vector of the [3M] following matrix:

$$A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix},$$

Assuming the initial eigen vector $X^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$

Q4c. Find the general solution of the given system of ODE by using eigen [5M] value eigen vector method:

$$x'_{1} = 3x_{1} - x_{3}$$

$$x'_{2} = -2x_{1} + 2x_{2} + x_{3}$$

$$x'_{3} = 8x_{1} - 3x_{3}$$

Q5a. Define Reliability and express it mathematically. [2M]

- Q5b. (i) Write down the differential equations for the modern counter- [3M] insurgency (COIN) model.
 - (ii) Derive the phase trajectories for (i) $\mu = 1$; (*ii*) $\mu = 0$.

(iii) What happens in the case (ii), when R tends to zero, that is, R force is nearly wiped out?

Q5c. Define simulation and list four advantages of simulation. [5M]